Fast wave propagation by model order reduction.
In this paper, we study some finite volume schemes for the nonlinear hyperbolic equation with the initial condition . Passing to the limit in these schemes, we prove the existence of an entropy solution . Proving also uniqueness, we obtain the convergence of the finite volume approximation to the entropy solution in , 1 ≤ p ≤ +∞. Furthermore, if , we show that , which leads to an “” error estimate between the approximate and the entropy solutions (where h defines the size of the...
In this paper we present recent results for the bicharacteristic based finite volume schemes, the so-called finite volume evolution Galerkin (FVEG) schemes. These methods were proposed to solve multi-dimensional hyperbolic conservation laws. They combine the usually conflicting design objectives of using the conservation form and following the characteristics, or bicharacteristics. This is realized by combining the finite volume formulation with approximate evolution operators, which use bicharacteristics...
We consider the numerical investigation of two hyperbolic shallow water models. We focus on the treatment of the hyperbolic part. We first recall some efficient finite volume solvers for the classical Saint-Venant system. Then we study their extensions to a new multilayer Saint-Venant system. Finally, we use a kinetic solver to perform some numerical tests which prove that the 2D multilayer Saint-Venant system is a relevant alternative to D hydrostatic Navier-Stokes equations.
We consider a system of two linear conservative wave equations, with a nonlinear coupling, in space dimension three. Spherical pulse like initial data cause focusing at the origin in the limit of short wavelength. Because the equations are conservative, the caustic crossing is not trivial, and we analyze it for particular initial data. It turns out that the phase shift between the incoming wave (before the focus) and the outgoing wave (past the focus) behaves like , where stands for the wavelength....
We study spherical pulse like families of solutions to semilinear wave equattions in space time of dimension 1+3 as the pulses focus at a point and emerge outgoing. We emphasize the scales for which the incoming and outgoing waves behave linearly but the nonlinearity has a strong effect at the focus. The focus crossing is described by a scattering operator for the semilinear equation, which broadens the pulses. The relative errors in our approximate solutions are small in the L∞ norm.
We prove the existence and find necessary and sufficient conditions for the uniqueness of the time-periodic solution to the equations for an arbitrary (sufficiently smooth) periodic right-hand side , where denotes the Laplace operator with respect to , and is the Ishlinskii hysteresis operator. For this equation describes e.g. the vibrations of an elastic membrane in an elastico-plastic medium.