Previous Page 6

Displaying 101 – 107 of 107

Showing per page

Propagation through trapped sets and semiclassical resolvent estimates

Kiril Datchev, András Vasy (2012)

Annales de l’institut Fourier

Motivated by the study of resolvent estimates in the presence of trapping, we prove a semiclassical propagation theorem in a neighborhood of a compact invariant subset of the bicharacteristic flow which is isolated in a suitable sense. Examples include a global trapped set and a single isolated periodic trajectory. This is applied to obtain microlocal resolvent estimates with no loss compared to the nontrapping setting.

Pseudomonotonicity and nonlinear hyperbolic equations

Dimitrios A. Kandilakis (1997)

Commentationes Mathematicae Universitatis Carolinae

In this paper we consider a nonlinear hyperbolic boundary value problem. We show that this problem admits weak solutions by using a lifting result for pseudomonotone operators and a surjectivity result concerning coercive and monotone operators.

Currently displaying 101 – 107 of 107

Previous Page 6