Displaying 401 – 420 of 1562

Showing per page

Étude spectrale d'opérateurs hypoelliptiques à caractéristiques multiples. I

Abderemane Mohamed (1982)

Annales de l'institut Fourier

Nous donnons le comportement asymptotique de valeurs propres d’opérateurs pseudodifférentiels autoadjoints, hypoelliptiques avec perte de k dérivées dans le cas où la variété caractéristique est symplectique. Nous généralisatons ainsi la formule du N ± ( λ ) relative aux opérateurs à caractéristiques doubles établie par A. Menikoff et J. Sjöstrand.

Evolution by the vortex filament equation of curves with a corner

Valeria Banica (2013)

Journées Équations aux dérivées partielles

In this proceedings article we shall survey a series of results on the stability of self-similar solutions of the vortex filament equation. This equation is a geometric flow for curves in 3 and it is used as a model for the evolution of a vortex filament in fluid mechanics. The main theorem give, under suitable assumptions, the existence and description of solutions generated by curves with a corner, for positive and negative times. Its companion theorem describes the evolution of perturbations...

Existence and multiplicity results for nonlinear eigenvalue problems with discontinuities

Nikolaos Papageorgiou, Francesca Papalini (2000)

Annales Polonici Mathematici

We study eigenvalue problems with discontinuous terms. In particular we consider two problems: a nonlinear problem and a semilinear problem for elliptic equations. In order to study the existence of solutions we replace these two problems with their multivalued approximations and, for the first problem, we estabilish an existence result while for the second problem we prove the existence of multiple nontrivial solutions. The approach used is variational.

Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems

J. Fleckinger, J. Hernández, F. Thélin (2004)

Bollettino dell'Unione Matematica Italiana

We study the existence of principal eigenvalues for differential operators of second order which are not necessarily in divergence form. We obtain results concerning multiplicity of principal eigenvalues in both the variational and the general case. Our approach uses systematically the Krein-Rutman theorem and fixed point arguments for the spectral radius of some associated problems. We also use a variational characterization for both the self-adjoint and the general case.

Currently displaying 401 – 420 of 1562