Displaying 521 – 540 of 1562

Showing per page

Inverse scattering via nonlinear integral equations method for a sound-soft crack with phaseless data

Peng Gao, Heping Dong, Fuming Ma (2018)

Applications of Mathematics

We consider the inverse scattering of time-harmonic plane waves to reconstruct the shape of a sound-soft crack from a knowledge of the given incident field and the phaseless data, and we check the invariance of far field data with respect to translation of the crack. We present a numerical method that is based on a system of nonlinear and ill-posed integral equations, and our scheme is easy and simple to implement. The numerical implementation is described and numerical examples are presented to...

Isoparametric mixed finite element approximation of eigenvalues and eigenvectors of 4th order eigenvalue problems with variable coefficients

Pulin Kumar Bhattacharyya, Neela Nataraj (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Estimates for the combined effect of boundary approximation and numerical integration on the approximation of (simple) eigenvalues and eigenvectors of 4th order eigenvalue problems with variable/constant coefficients in convex domains with curved boundary by an isoparametric mixed finite element method, which, in the particular case of bending problems of aniso-/ortho-/isotropic plates with variable/constant thickness, gives a simultaneous approximation to bending moment tensor field Ψ = ( ψ i j ) 1 i , j 2 and displacement...

Isoparametric mixed finite element approximation of eigenvalues and eigenvectors of 4th order eigenvalue problems with variable coefficients

Pulin Kumar Bhattacharyya, Neela Nataraj (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Estimates for the combined effect of boundary approximation and numerical integration on the approximation of (simple) eigenvalues and eigenvectors of 4th order eigenvalue problems with variable/constant coefficients in convex domains with curved boundary by an isoparametric mixed finite element method, which, in the particular case of bending problems of aniso-/ortho-/isotropic plates with variable/constant thickness, gives a simultaneous approximation to bending moment tensor field Ψ = ( ψ i j ) 1 i , j 2 and displacement...

La géométrie de Bakry-Émery et l’écart fondamental

Julie Rowlett (2009/2010)

Séminaire de théorie spectrale et géométrie

Cet article est une présentation rapide, d’une part de résultats de l’auteur et Z. Lu [14], et d’autre part, de la résolution de la conjecture de l’écart fondamental par Andrews et Clutterbuck [1]. Nous commençons par rappeler ce qu’est la géométrie de Bakry-Émery, nous poursuivons en montrant les liens entre valeurs propres du laplacien de Dirichlet et de Neumann. Nous démontrons ensuite un rapport entre l’écart fondamental et la géométrie de Bakry-Émery, puis nous présentons les idées principales...

Currently displaying 521 – 540 of 1562