Displaying 801 – 820 of 1562

Showing per page

On the Uniform Decay of the Local Energy

Vodev, Georgi (1999)

Serdica Mathematical Journal

It is proved in [1],[2] that in odd dimensional spaces any uniform decay of the local energy implies that it must decay exponentially. We extend this to even dimensional spaces and to more general perturbations (including the transmission problem) showing that any uniform decay of the local energy implies that it must decay like O(t^(−2n) ), t ≫ 1 being the time and n being the space dimension.

On the uniqueness and simplicity of the principal eigenvalue

Marcello Lucia (2005)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Given an open set Ω of R N N > 2 , bounded or unbounded, and a function w L N 2 Ω with w + 0 but allowed to change sign, we give a short proof...

On torsional rigidity and principal frequencies: an invitation to the Kohler−Jobin rearrangement technique

Lorenzo Brasco (2014)

ESAIM: Control, Optimisation and Calculus of Variations

We generalize to the p-Laplacian Δp a spectral inequality proved by M.-T. Kohler−Jobin. As a particular case of such a generalization, we obtain a sharp lower bound on the first Dirichlet eigenvalue of Δp of a set in terms of its p-torsional rigidity. The result is valid in every space dimension, for every 1 < p < ∞ and for every open set with finite measure. Moreover, it holds by replacing the first eigenvalue with more general optimal Poincaré-Sobolev constants. The method of proof...

Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic domains

Yannick Privat, Emmanuel Trélat, Enrique Zuazua (2016)

Journal of the European Mathematical Society

We consider the wave and Schrödinger equations on a bounded open connected subset Ω of a Riemannian manifold, with Dirichlet, Neumann or Robin boundary conditions whenever its boundary is nonempty. We observe the restriction of the solutions to a measurable subset ω of Ω during a time interval [ 0 , T ] with T > 0 . It is well known that, if the pair ( ω , T ) satisfies the Geometric Control Condition ( ω being an open set), then an observability inequality holds guaranteeing that the total energy of solutions can be...

Optimal potentials for Schrödinger operators

Giuseppe Buttazzo, Augusto Gerolin, Berardo Ruffini, Bozhidar Velichkov (2014)

Journal de l’École polytechnique — Mathématiques

We consider the Schrödinger operator - Δ + V ( x ) on H 0 1 ( Ω ) , where Ω is a given domain of d . Our goal is to study some optimization problems where an optimal potential V 0 has to be determined in some suitable admissible classes and for some suitable optimization criteria, like the energy or the Dirichlet eigenvalues.

Optimal Proliferation Rate in a Cell Division Model

P. Michel (2010)

Mathematical Modelling of Natural Phenomena

We consider a size structured cell population model where a mother cell gives birth to two daughter cells. We know that the asymptotic behavior of the density of cells is given by the solution to an eigenproblem. The eigenvector gives the asymptotic shape and the eigenvalue gives the exponential growth rate and so the Maltusian parameter. The Maltusian parameter depends on the division rule for the mother cell, i.e., symmetric (the two daughter cells have the same size) or asymmetric. We use a...

Pattern and Waves for a Model in Population Dynamics with Nonlocal Consumption of Resources

S. Genieys, V. Volpert, P. Auger (2010)

Mathematical Modelling of Natural Phenomena

We study a reaction-diffusion equation with an integral term describing nonlocal consumption of resources in population dynamics. We show that a homogeneous equilibrium can lose its stability resulting in appearance of stationary spatial structures. They can be related to the emergence of biological species due to the intra-specific competition and random mutations. Various types of travelling waves are observed.

Currently displaying 801 – 820 of 1562