The search session has expired. Please query the service again.
Displaying 141 –
160 of
161
In this paper, we study the spectrum for the following eigenvalue problem with the p-biharmonic operator involving the Hardy term:
in Ω, .
By using the variational technique and the Hardy-Rellich inequality, we prove that the above problem has at least one increasing sequence of positive eigenvalues.
It is proved in [1],[2] that in odd dimensional spaces any uniform decay
of the local energy implies that it must decay exponentially. We
extend this to even dimensional spaces and to more general perturbations
(including the transmission problem) showing that any uniform decay of the
local energy implies that it must decay like O(t^(−2n) ), t ≫ 1 being the time
and n being the space dimension.
Given an open set of , bounded or unbounded, and a function with but allowed to change sign, we give a short proof...
We generalize to the p-Laplacian Δp a spectral inequality proved by M.-T. Kohler−Jobin. As a particular case of such a generalization, we obtain a sharp lower bound on the first Dirichlet eigenvalue of Δp of a set in terms of its p-torsional rigidity. The result is valid in every space dimension, for every 1 < p < ∞ and for every open set with finite measure. Moreover, it holds by replacing the first eigenvalue with more general optimal Poincaré-Sobolev constants. The method of proof...
We consider the wave and Schrödinger equations on a bounded open connected subset of a Riemannian manifold, with Dirichlet, Neumann or Robin boundary conditions whenever its boundary is nonempty. We observe the restriction of the solutions to a measurable subset of during a time interval with . It is well known that, if the pair satisfies the Geometric Control Condition ( being an open set), then an observability inequality holds guaranteeing that the total energy of solutions can be...
We consider the Schrödinger operator on , where is a given domain of . Our goal is to study some optimization problems where an optimal potential has to be determined in some suitable admissible classes and for some suitable optimization criteria, like the energy or the Dirichlet eigenvalues.
We consider a size structured cell population model where a mother cell gives birth to
two daughter cells. We know that the asymptotic behavior of the density of cells is given by the
solution to an eigenproblem. The eigenvector gives the asymptotic shape and the eigenvalue gives
the exponential growth rate and so the Maltusian parameter. The Maltusian parameter depends on
the division rule for the mother cell, i.e., symmetric (the two daughter cells have the same size) or
asymmetric. We use a...
Currently displaying 141 –
160 of
161