Page 1

Displaying 1 – 11 of 11

Showing per page

On blow-up of solution for Euler equations

Eric Behr, Jindřich Nečas, Hongyou Wu (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present numerical evidence for the blow-up of solution for the Euler equations. Our approximate solutions are Taylor polynomials in the time variable of an exact solution, and we believe that in terms of the exact solution, the blow-up will be rigorously proved.

On blow-up of solution for Euler equations

Eric Behr, Jindřich Nečas, Hongyou Wu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present numerical evidence for the blow-up of solution for the Euler equations. Our approximate solutions are Taylor polynomials in the time variable of an exact solution, and we believe that in terms of the exact solution, the blow-up will be rigorously proved.

On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation

Georgios E. Zouraris (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We discretize the nonlinear Schrödinger equation, with Dirichlet boundary conditions, by a linearly implicit two-step finite element method which conserves the L 2 norm. We prove optimal order a priori error estimates in the L 2 and H 1 norms, under mild mesh conditions for two and three space dimensions.

Currently displaying 1 – 11 of 11

Page 1