Displaying 281 – 300 of 787

Showing per page

Instability of the stationary solutions of generalized dissipative Boussinesq equation

Amin Esfahani (2014)

Applications of Mathematics

In this work we study the generalized Boussinesq equation with a dissipation term. We show that, under suitable conditions, a global solution for the initial value problem exists. In addition, we derive sufficient conditions for the blow-up of the solution to the problem. Furthermore, the instability of the stationary solutions of this equation is established.

Interior regularity of weak solutions to the equations of a stationary motion of a non-Newtonian fluid with shear-dependent viscosity. The case q = 3 d d + 2

Jörg Wolf (2007)

Commentationes Mathematicae Universitatis Carolinae

In this paper we consider weak solutions 𝐮 : Ω d to the equations of stationary motion of a fluid with shear dependent viscosity in a bounded domain Ω d ( d = 2 or d = 3 ). For the critical case q = 3 d d + 2 we prove the higher integrability of 𝐮 which forms the basis for applying the method of differences in order to get fractional differentiability of 𝐮 . From this we show the existence of second order weak derivatives of u .

Kink solutions of the binormal flow

Luis Vega (2003)

Journées équations aux dérivées partielles

I shall present some recent work in collaboration with S. Gutierrez on the characterization of all selfsimilar solutions of the binormal flow : X t = X s × X s s which preserve the length parametrization. Above X ( s , t ) is a curve in 3 , s the arclength parameter, and t denote the temporal variable. This flow appeared for the first time in the work of Da Rios (1906) as a crude approximation to the evolution of a vortex filament under Euler equation, and it is intimately related to the focusing cubic nonlinear Schrödinger...

L q -approach to weak solutions of the Oseen flow around a rotating body

Stanislav Kračmar, Šárka Nečasová, Patrick Penel (2008)

Banach Center Publications

We consider the time-periodic Oseen flow around a rotating body in ℝ³. We prove a priori estimates in L q -spaces of weak solutions for the whole space problem under the assumption that the right-hand side has the divergence form. After a time-dependent change of coordinates the problem is reduced to a stationary Oseen equation with the additional term -(ω ∧ x)·∇u + ω ∧ u in the equation of momentum where ω denotes the angular velocity. We prove the existence of generalized weak solutions in L q -space...

La résolution des équations aux dérivées partielles dans les Opuscules mathématiques de D’Alembert (1761–1783)

Alexandre Guilbaud, Guillaume Jouve (2009)

Revue d'histoire des mathématiques

Au regard de la première partie de son œuvre, D’Alembert est reconnu aujourd’hui comme le fondateur de la théorie des équations aux dérivées partielles. La résolution de ces équations dans le cadre de problèmes physico-mathématiques dans ses neuf tomes d’Opuscules mathématiques (1761–1783) reste cependant peu étudiée par les historiens. Nous examinons ici cette question à la lumière de ses recherches sur les cordes vibrantes et l’écoulement des fluides dans ce corpus tardif. Celles-ci nous permettent...

Large time regular solutions to the MHD equations in cylindrical domains

Wisam Alame, Wojciech M. Zajączkowski (2011)

Applicationes Mathematicae

We prove the large time existence of solutions to the magnetohydrodynamics equations with slip boundary conditions in a cylindrical domain. Assuming smallness of the L₂-norms of the derivatives of the initial velocity and of the magnetic field with respect to the variable along the axis of the cylinder, we are able to obtain an estimate for the velocity and the magnetic field in W 2 , 1 without restriction on their magnitude. Then the existence follows from the Leray-Schauder fixed point theorem.

Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux

Raphaël Danchin, Marius Paicu (2008)

Bulletin de la Société Mathématique de France

Dans cet article, on étudie le système de Boussinesq décrivant le phénomène de convection dans un fluide incompressible et visqueux. Ce système est composé des équations de Navier-Stokes incompressibles avec un terme de force verticale dont l’amplitude est transportée sans dissipationpar le flot du champ de vitesses. On montre que les résultats classiques pour le système de Navier-Stokes standard demeurent vrais pour le système de Boussinesq bien qu’il n’y ait pas d’amortissement sur le terme de...

Currently displaying 281 – 300 of 787