Page 1 Next

Displaying 1 – 20 of 33

Showing per page

L q -approach to weak solutions of the Oseen flow around a rotating body

Stanislav Kračmar, Šárka Nečasová, Patrick Penel (2008)

Banach Center Publications

We consider the time-periodic Oseen flow around a rotating body in ℝ³. We prove a priori estimates in L q -spaces of weak solutions for the whole space problem under the assumption that the right-hand side has the divergence form. After a time-dependent change of coordinates the problem is reduced to a stationary Oseen equation with the additional term -(ω ∧ x)·∇u + ω ∧ u in the equation of momentum where ω denotes the angular velocity. We prove the existence of generalized weak solutions in L q -space...

La résolution des équations aux dérivées partielles dans les Opuscules mathématiques de D’Alembert (1761–1783)

Alexandre Guilbaud, Guillaume Jouve (2009)

Revue d'histoire des mathématiques

Au regard de la première partie de son œuvre, D’Alembert est reconnu aujourd’hui comme le fondateur de la théorie des équations aux dérivées partielles. La résolution de ces équations dans le cadre de problèmes physico-mathématiques dans ses neuf tomes d’Opuscules mathématiques (1761–1783) reste cependant peu étudiée par les historiens. Nous examinons ici cette question à la lumière de ses recherches sur les cordes vibrantes et l’écoulement des fluides dans ce corpus tardif. Celles-ci nous permettent...

Large time regular solutions to the MHD equations in cylindrical domains

Wisam Alame, Wojciech M. Zajączkowski (2011)

Applicationes Mathematicae

We prove the large time existence of solutions to the magnetohydrodynamics equations with slip boundary conditions in a cylindrical domain. Assuming smallness of the L₂-norms of the derivatives of the initial velocity and of the magnetic field with respect to the variable along the axis of the cylinder, we are able to obtain an estimate for the velocity and the magnetic field in W 2 , 1 without restriction on their magnitude. Then the existence follows from the Leray-Schauder fixed point theorem.

Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux

Raphaël Danchin, Marius Paicu (2008)

Bulletin de la Société Mathématique de France

Dans cet article, on étudie le système de Boussinesq décrivant le phénomène de convection dans un fluide incompressible et visqueux. Ce système est composé des équations de Navier-Stokes incompressibles avec un terme de force verticale dont l’amplitude est transportée sans dissipationpar le flot du champ de vitesses. On montre que les résultats classiques pour le système de Navier-Stokes standard demeurent vrais pour le système de Boussinesq bien qu’il n’y ait pas d’amortissement sur le terme de...

Limite incompressible de solutions du système d’Euler compressible 2-D dans certains cas mal préparés

Alexandre Dutrifoy (2002/2003)

Séminaire Équations aux dérivées partielles

Les effets dispersifs permettent de passer à la limite dans le système d’Euler compressible 2-D isentropique, quand le nombre de Mach tend vers zéro, même si les données initiales ne sont pas uniformément régulières.Ceci mène à des résultats de convergence vers des solutions non régulières du système d’Euler incompressible, comme les poches de tourbillon ou les solutions de Yudovich.

Limite quasi-neutre en dimension 1

Emmanuel Grenier (1999)

Journées équations aux dérivées partielles

L’objet de cette note est d’étudier la limite quasineutre des équations de Vlasov Poisson en dimension 1 d’espace. Ceci inclut l’obtention de résultats d’existence pour le système limite ainsi que la preuve de la convergence.

Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations

Jean-Michel Coron (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint–Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state.

Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations

Jean-Michel Coron (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint–Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state.

Local existence of solutions of a free boundary problem for equations of compressible viscous heat-conducting fluids

Ewa Zadrzyńska, Wojciech Zajączkowski (1998)

Applicationes Mathematicae

The local existence and the uniqueness of solutions for equations describing the motion of viscous compressible heat-conducting fluids in a domain bounded by a free surface is proved. First, we prove the existence of solutions of some auxiliary problems by the Galerkin method and by regularization techniques. Next, we use the method of successive approximations to prove the local existence for the main problem.

Currently displaying 1 – 20 of 33

Page 1 Next