Gasdynamic regularity: some classifying geometrical remarks.
Inspired by the work of Zhidkov on the KdV equation, we perform a construction of weighted Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation. The resulting measures are supported by Sobolev spaces of increasing regularity. We also prove a property on the support of these measures leading to the conjecture that they are indeed invariant by the flow of the Benjamin-Ono equation.
We introduce a new class of nonlocal kinetic equations and nonlocal Fokker-Planck equations associated with an effective generalized thermodynamical formalism. These equations have a rich physical and mathematical structure that can describe phase transitions and blow-up phenomena. On general grounds, our formalism can have applications in different domains of physics, astrophysics, hydrodynamics and biology. We find an aesthetic connexion between topics (stars, vortices, bacteries,...) which were...
We describe some recent results on a specific nonlinear hydrodynamical problem where the geometric approach gives insight into a variety of aspects.
We survey two problems illustrating geometric-topological and Hamiltonian methods in fluid mechanics: energy relaxation of a magnetic field and conservation laws for ideal fluid motion. More details and results, as well as a guide to the literature on these topics can be found in [3].
On sait depuis Maslov, Arnold, etc... associer à presque tout germe de variété lagrangienne ou legendrienne lisse une classe de fonctions oscillantes qui sous des hypothèses génériques à la Thom fournissent des modèles universels pour le comportement d’une onde lumineuse au voisinage de la caustique.Le présent article étend cette construction à une classe de situations où la variété caractéristique est un germe singulier (union de composantes lisses), qui peut néanmoins être stable en ce sens que...
The self-consistent chemotaxis-fluid system is considered under no-flux boundary conditions for and the Dirichlet boundary condition for on a bounded smooth domain
We prove the existence of a global solution for a one-dimensio- nal Navier-Stokes system for a gas with internal capillarity.
We show global existence for a class of models of fluids that change their properties depending on the concentration of a chemical. We allow that the stress tensor in (t, x) depends on the velocity and concentration at other points and times. The example we have in mind foremost are materials with memory.
Global-in-time existence of solutions for incompressible magnetohydrodynamic fluid equations in a bounded domain Ω ⊂ ℝ³ with the boundary slip conditions is proved. The proof is based on the potential method. The existence is proved in a class of functions such that the velocity and the magnetic field belong to and the pressure q satisfies for p ≥ 7/3.
Global existence of solutions for equations describing a motion of magnetohydrodynamic compresible fluid in a domain bounded by a free surface is proved. In the exterior domain we have an electromagnetic field which is generated by some currents located on a fixed boundary. We have proved that the domain occupied by the fluid remains close to the initial domain for all time.