The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Cultivating oleaginous microalgae in specific culturing devices such as raceways is seen as a future way to produce biofuel. The complexity of this process coupling non linear biological activity to hydrodynamics makes the optimization problem very delicate. The large amount of parameters to be taken into account paves the way for a useful mathematical modeling. Due to the heterogeneity of raceways along the depth dimension regarding temperature, light intensity or nutrients availability, we adopt...
We study the noncompact solution sequences to the mean field equation for arbitrarily signed vortices and observe the quantization of the mass of concentration, using the rescaling argument.
This paper proves a Serrin’s type blow-up criterion for the 3D density-dependent Navier-Stokes-Korteweg equations with vacuum. It is shown that if the density and velocity field satisfy for some and any satisfying , then the strong solutions to the density-dependent Navier-Stokes-Korteweg equations can exist globally over . Here denotes the weak space.
We analyze the equation coming from the Eulerian-Lagrangian description of fluids. We discuss a couple of ways to extend this notion to viscous fluids. The main focus of this paper is to discuss the first way, due to Constantin. We show that this description can only work for short times, after which the ``back to coordinates map'' may have no smooth inverse. Then we briefly discuss a second way that uses Brownian motion. We use this to provide a plausibility argument for the global regularity for...
For a two phase incompressible flow we consider a diffuse interface model aimed at addressing the movement of three-phase (fluid-fluid-solid) contact lines. The model consists of the Cahn Hilliard Navier Stokes system with a variant of the Navier slip boundary conditions. We show that this model possesses a natural energy law. For this system, a new numerical technique based on operator splitting and fractional time-stepping is proposed. The method is shown to be unconditionally stable. We present...
We investigate the behaviour of the meniscus of a drop of liquid aluminium in the neighbourhood of a state of equilibrium under the influence of weak electromagnetic forces. The mathematical model comprises both Maxwell and Navier-Stokes equations in 2D. The meniscus is governed by the Young-Laplace equation, the data being the jump of the normal stress. To show the existence and uniqueness of the solution we use the classical implicit function theorem. Moreover, the differentiability of the operator...
Here we investigate the Cauchy problem for the barotropic Navier-Stokes equations in , in the critical Besov spaces setting. We improve recent results as regards the uniqueness condition: initial velocities in critical Besov spaces with (not too) negative indices generate a unique local solution. Apart from (critical) regularity, the initial density just has to be bounded away from and to tend to some positive constant at infinity. Density-dependent viscosity coefficients may be considered. Using...
In this work we study a fully discrete mixed scheme, based on continuous finite elements in space and a linear semi-implicit first-order integration in time, approximating an Ericksen–Leslie nematic liquid crystal model by means of a Ginzburg–Landau penalized problem. Conditional stability of this scheme is proved via a discrete version of the energy law satisfied by the continuous problem, and conditional convergence towards generalized Young measure-valued solutions to the Ericksen–Leslie problem...
This paper proves a logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain with the Navier-type boundary condition.
Currently displaying 1 –
20 of
95