Previous Page 2

Displaying 21 – 29 of 29

Showing per page

Remarks on the a priori bound for the vorticity of the axisymmetric Navier-Stokes equations

Zujin Zhang, Chenxuan Tong (2022)

Applications of Mathematics

We study the axisymmetric Navier-Stokes equations. In 2010, Loftus-Zhang used a refined test function and re-scaling scheme, and showed that | ω r ( x , t ) | + | ω z ( r , t ) | C r 10 , 0 < r 1 2 . By employing the dimension reduction technique by Lei-Navas-Zhang, and analyzing ω r , ω z and ω θ / r on different hollow cylinders, we are able to improve it and obtain | ω r ( x , t ) | + | ω z ( r , t ) | C | ln r | r 17 / 2 , 0 < r 1 2 .

Remarks on the equatorial shallow water system

Chloé Mullaert (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

This article recalls the results given by A. Dutrifoy, A. Majda and S. Schochet in [1] in which they prove an uniform estimate of the system as well as the convergence to a global solution of the long wave equations as the Froud number tends to zero. Then, we will prove the convergence with weaker hypothesis and show that the life span of the solutions tends to infinity as the Froud number tends to zero.

Currently displaying 21 – 29 of 29

Previous Page 2