Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation
We provide a detailed treatment of the Camassa-Holm (CH) hierarchy with special emphasis on its algebro-geometric solutions. In analogy to other completely integrable hierarchies of soliton equations such as the KdV or AKNS hierarchies, the CH hierarchy is recursively constructed by means of a basic polynomial formalism invoking a spectral parameter. Moreover, we study Dubrovin-type equations for auxiliary divisors and associated trace formulas, consider the corresponding algebro-geometric initial...
We study asymptotic behavior of solutions to multifractal Burgers-type equation , where the operator A is a linear combination of fractional powers of the second derivative and f is a polynomial nonlinearity. Such equations appear in continuum mechanics as models with fractal diffusion. The results include decay rates of the -norms, 1 ≤ p ≤ ∞, of solutions as time tends to infinity, as well as determination of two successive terms of the asymptotic expansion of solutions.