Almost global existence of small solutions to quadratic nonlinear Schördinger equations in three space dimensions.
We extend the convergence method introduced in our works [8–10] for almost sure global well-posedness of Gibbs measure evolutions of the nonlinear Schrödinger (NLS) and nonlinear wave (NLW) equations on the unit ball in to the case of the three dimensional NLS. This is the first probabilistic global well-posedness result for NLS with supercritical data on the unit ball in . The initial data is taken as a Gaussian random process lying in the support of the Gibbs measure associated to the equation,...
We also prove a long time existence result; more precisely we prove that for fixed there exists a set , such that any data , evolves up to time into a solution with , . In particular we find a nontrivial set of data which gives rise to long time solutions below the critical space , that is in the supercritical scaling regime.
This note reports on recent results on the anisotropic Calderón problem obtained in a joint work with Carlos E. Kenig, Mikko Salo and Gunther Uhlmann [8]. The approach is based on the construction of complex geometrical optics solutions to the Schrödinger equation involving phases introduced in the work [12] of Kenig, Sjöstrand and Uhlmann in the isotropic setting. We characterize those manifolds where the construction is possible, and give applications to uniqueness for the corresponding anisotropic...
2000 Mathematics Subject Classification: 35Q02, 35Q05, 35Q10, 35B40.We consider the stationary one dimensional Schrödinger-Poisson system on a bounded interval with a background potential describing a quantum well. Using a partition function which forces the particles to remain in the quantum well, the limit h®0 in the nonlinear system leads to a uniquely solved nonlinear problem with concentrated particle density. It allows to conclude about the convergence of the solution.
Asymptotics of solutions to Schrödinger equations with singular magnetic and electric potentials is investigated. By using a Almgren type monotonicity formula, separation of variables, and an iterative Brezis–Kato type procedure, we describe the exact behavior near the singularity of solutions to linear and semilinear (critical and subcritical) elliptic equations with an inverse square electric potential and a singular magnetic potential with a homogeneity of order −1.
We prove bilinear virial identities for the nonlinear Schrödinger equation, which are extensions of the Morawetz interaction inequalities. We recover and extend known bilinear improvements to Strichartz inequalities and provide applications to various nonlinear problems, most notably on domains with boundaries.
We consider the critical nonlinear Schrödinger equation with initial condition in dimension . For , local existence in time of solutions on an interval is known, and there exists finite time blow up solutions, that is such that . This is the smallest power in the nonlinearity for which blow up occurs, and is critical in this sense. The question we address is to understand the blow up dynamic. Even though there exists an explicit example of blow up solution and a class of initial data...