The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 2

Displaying 21 – 37 of 37

Showing per page

Almost sure global well-posedness for the radial nonlinear Schrödinger equation on the unit ball II: the 3d case

Jean Bourgain, Aynur Bulut (2014)

Journal of the European Mathematical Society

We extend the convergence method introduced in our works [8–10] for almost sure global well-posedness of Gibbs measure evolutions of the nonlinear Schrödinger (NLS) and nonlinear wave (NLW) equations on the unit ball in d to the case of the three dimensional NLS. This is the first probabilistic global well-posedness result for NLS with supercritical data on the unit ball in 3 . The initial data is taken as a Gaussian random process lying in the support of the Gibbs measure associated to the equation,...

Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below the energy space

Andrea R. Nahmod, Gigliola Staffilani (2015)

Journal of the European Mathematical Society

We also prove a long time existence result; more precisely we prove that for fixed T > 0 there exists a set Σ T , ( Σ T ) > 0 such that any data φ ω ( x ) H γ ( 𝕋 3 ) , γ < 1 , ω Σ T , evolves up to time T into a solution u ( t ) with u ( t ) - e i t Δ φ ω C ( [ 0 , T ] ; H s ( 𝕋 3 ) ) , s = s ( γ ) > 1 . In particular we find a nontrivial set of data which gives rise to long time solutions below the critical space H 1 ( 𝕋 3 ) , that is in the supercritical scaling regime.

Anisotropic inverse problems and Carleman estimates

David Dos Santos Ferreira (2007/2008)

Séminaire Équations aux dérivées partielles

This note reports on recent results on the anisotropic Calderón problem obtained in a joint work with Carlos E. Kenig, Mikko Salo and Gunther Uhlmann [8]. The approach is based on the construction of complex geometrical optics solutions to the Schrödinger equation involving phases introduced in the work [12] of Kenig, Sjöstrand and Uhlmann in the isotropic setting. We characterize those manifolds where the construction is possible, and give applications to uniqueness for the corresponding anisotropic...

Asymptotic Analysis of a Schrödinger-Poisson System with Quantum Wells and Macroscopic Nonlinearities in Dimension 1

Faraj, A. (2010)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 35Q02, 35Q05, 35Q10, 35B40.We consider the stationary one dimensional Schrödinger-Poisson system on a bounded interval with a background potential describing a quantum well. Using a partition function which forces the particles to remain in the quantum well, the limit h®0 in the nonlinear system leads to a uniquely solved nonlinear problem with concentrated particle density. It allows to conclude about the convergence of the solution.

Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential

Veronica Felli, Alberto Ferrero, Susanna Terracini (2011)

Journal of the European Mathematical Society

Asymptotics of solutions to Schrödinger equations with singular magnetic and electric potentials is investigated. By using a Almgren type monotonicity formula, separation of variables, and an iterative Brezis–Kato type procedure, we describe the exact behavior near the singularity of solutions to linear and semilinear (critical and subcritical) elliptic equations with an inverse square electric potential and a singular magnetic potential with a homogeneity of order −1.

Currently displaying 21 – 37 of 37

Previous Page 2