Ground states of nonlinear Schrödinger equations with potentials
In this preliminary Note we outline the results of the forthcoming paper [2] dealing with a class on nonlinear Schrödinger equations with potentials vanishing at infinity. Working in weighted Sobolev spaces, the existence of a ground state is proved. Furthermore, the behaviour of such a solution, as the Planck constant tends to zero (semiclassical limit), is studied proving that it concentrates at a point.
We deal with a class on nonlinear Schrödinger equations (NLS) with potentials , , and , . Working in weighted Sobolev spaces, the existence of ground states belonging to is proved under the assumption that for some . Furthermore, it is shown that are spikes concentrating at a minimum point of , where .
This text aims to describe results of the authors on the long time behavior of NLS on product spaces with a particular emphasis on the existence of solutions with growing higher Sobolev norms.
We consider the cubic defocusing nonlinear Schrödinger equation in the two dimensional torus. Fix . Recently Colliander, Keel, Staffilani, Tao and Takaoka proved the existence of solutions with -Sobolev norm growing in time. We establish the existence of solutions with polynomial time estimates. More exactly, there is such that for any we find a solution and a time such that . Moreover, the time satisfies the polynomial bound .