Page 1 Next

Displaying 1 – 20 of 58

Showing per page

A general Hamilton-Jacobi framework for non-linear state-constrained control problems

Albert Altarovici, Olivier Bokanowski, Hasnaa Zidani (2013)

ESAIM: Control, Optimisation and Calculus of Variations

The paper deals with deterministic optimal control problems with state constraints and non-linear dynamics. It is known for such problems that the value function is in general discontinuous and its characterization by means of a Hamilton-Jacobi equation requires some controllability assumptions involving the dynamics and the set of state constraints. Here, we first adopt the viability point of view and look at the value function as its epigraph. Then, we prove that this epigraph can always be described...

A Hamilton-Jacobi approach to junction problems and application to traffic flows

Cyril Imbert, Régis Monneau, Hasnaa Zidani (2013)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is concerned with the study of a model case of first order Hamilton-Jacobi equations posed on a “junction”, that is to say the union of a finite number of half-lines with a unique common point. The main result is a comparison principle. We also prove existence and stability of solutions. The two challenging difficulties are the singular geometry of the domain and the discontinuity of the Hamiltonian. As far as discontinuous Hamiltonians are concerned, these results seem to be new. They...

A multidimensional singular stochastic control problem on a finite time horizon

Marcin Boryc, Łukasz Kruk (2015)

Annales UMCS, Mathematica

A singular stochastic control problem in n dimensions with timedependent coefficients on a finite time horizon is considered. We show that the value function for this problem is a generalized solution of the corresponding HJB equation with locally bounded second derivatives with respect to the space variables and the first derivative with respect to time. Moreover, we prove that an optimal control exists and is unique

A nonlinear plate control without linearization

Kenan Yildirim, Ismail Kucuk (2017)

Open Mathematics

In this paper, an optimal vibration control problem for a nonlinear plate is considered. In order to obtain the optimal control function, wellposedness and controllability of the nonlinear system is investigated. The performance index functional of the system, to be minimized by minimum level of control, is chosen as the sum of the quadratic 10 functional of the displacement. The velocity of the plate and quadratic functional of the control function is added to the performance index functional as...

An Optimal Control Problem for a Predator-Prey Reaction-Diffusion System

N. C. Apreutesei (2010)

Mathematical Modelling of Natural Phenomena

An optimal control problem is studied for a predator-prey system of PDE, with a logistic growth rate of the prey and a general functional response of the predator. The control function has two components. The purpose is to maximize a mean density of the two species in their habitat. The existence of the optimal solution is analyzed and some necessary optimality conditions are established. The form of the optimal control is found in some particular...

Analyse de sensibilité d’un problème de contrôle optimal bilinéaire

Jean-Marc Clérin (2012)

Annales mathématiques Blaise Pascal

Dans cet article, nous étudions la sensibilité d’un problème de contrôle optimal de type bilinéaire. Le coût est différentiable, quadratique et strictement convexe. Le système est gouverné par un opérateur parabolique du quatrième ordre et présente une perturbation additive dans l’équation d’état, ainsi qu’une partie bilinéaire, relativement au contrôle u et à l’état z , de la forme ( u · ) z . Sous des conditions de petitesse de l’état initial et de la perturbation, nous exploitons les propriétés de régularité...

Analysis of a time optimal control problem related to the management of a bioreactor

Lino J. Alvarez-Vázquez, Francisco J. Fernández, Aurea Martínez (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a time optimal control problem arisen from the optimal management of a bioreactor devoted to the treatment of eutrophicated water. We formulate this realistic problem as a state-control constrained time optimal control problem. After analyzing the state system (a complex system of coupled partial differential equations with non-smooth coefficients for advection-diffusion-reaction with Michaelis-Menten kinetics, modelling the eutrophication processes) we demonstrate the existence of,...

Analysis of a time optimal control problem related to the management of a bioreactor***

Lino J. Alvarez-Vázquez, Francisco J. Fernández, Aurea Martínez (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a time optimal control problem arisen from the optimal management of a bioreactor devoted to the treatment of eutrophicated water. We formulate this realistic problem as a state-control constrained time optimal control problem. After analyzing the state system (a complex system of coupled partial differential equations with non-smooth coefficients for advection-diffusion-reaction with Michaelis-Menten kinetics, modelling the eutrophication processes) we demonstrate the existence of,...

Bellman approach to some problems in harmonic analysis

Alexander Volberg (2001/2002)

Séminaire Équations aux dérivées partielles

The stochastic optimal control uses the differential equation of Bellman and its solution - the Bellman function. Recently the Bellman function proved to be an efficient tool for solving some (sometimes old) problems in harmonic analysis.

Bilevel Approach of a Decomposed Topology Optimization Problem

A. Makrizi, B. Radi (2010)

Mathematical Modelling of Natural Phenomena

In topology optimization problems, we are often forced to deal with large-scale numerical problems, so that the domain decomposition method occurs naturally. Consider a typical topology optimization problem, the minimum compliance problem of a linear isotropic elastic continuum structure, in which the constraints are the partial differential equations of linear elasticity. We subdivide the partial differential equations into two subproblems posed...

Boundary control and shape optimization for the robust design of bypass anastomoses under uncertainty

Toni Lassila, Andrea Manzoni, Alfio Quarteroni, Gianluigi Rozza (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We review the optimal design of an arterial bypass graft following either a (i) boundary optimal control approach, or a (ii) shape optimization formulation. The main focus is quantifying and treating the uncertainty in the residual flow when the hosting artery is not completely occluded, for which the worst-case in terms of recirculation effects is inferred to correspond to a strong orifice flow through near-complete occlusion.A worst-case optimal control approach is applied to the steady Navier-Stokes...

Control of the continuity equation with a non local flow

Rinaldo M. Colombo, Michael Herty, Magali Mercier (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper focuses on the analytical properties of the solutions to the continuity equation with non local flow. Our driving examples are a supply chain model and an equation for the description of pedestrian flows. To this aim, we prove the well posedness of weak entropy solutions in a class of equations comprising these models. Then, under further regularity conditions, we prove the differentiability of solutions with respect to the initial datum and characterize this derivative. A necessary ...

Control of the continuity equation with a non local flow

Rinaldo M. Colombo, Michael Herty, Magali Mercier (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper focuses on the analytical properties of the solutions to the continuity equation with non local flow. Our driving examples are a supply chain model and an equation for the description of pedestrian flows. To this aim, we prove the well posedness of weak entropy solutions in a class of equations comprising these models. Then, under further regularity conditions, we prove the differentiability of solutions with respect to the initial datum and characterize this derivative. A necessary ...

Controllability of a parabolic system with a diffusive interface

Jérôme Le Rousseau, Matthieu Léautaud, Luc Robbiano (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

We consider a linear parabolic transmission problem across an interface of codimension one in a bounded domain or on a Riemannian manifold, where the transmission conditions involve an additional parabolic operator on the interface. This system is an idealization of a three-layer model in which the central layer has a small thickness δ . We prove a Carleman estimate in the neighborhood of the interface for an associated elliptic operator by means of partial estimates in several microlocal regions....

Controllability problems for the 1-D wave equation on a half-axis with the Dirichlet boundary control

Larissa V. Fardigola (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper necessary and sufficient conditions of L∞-controllability and approximate L∞-controllability are obtained for the control system wtt = wxx − q2w, w(0,t) = u(t), x > 0, t ∈ (0,T), where q ≥ 0, T > 0, u ∈ L∞(0,T) is a control. This system is considered in the Sobolev spaces.

Controllability problems for the 1-D wave equation on a half-axis with the Dirichlet boundary control

Larissa V. Fardigola (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper necessary and sufficient conditions of L∞-controllability and approximate L∞-controllability are obtained for the control system wtt = wxx − q2w, w(0,t) = u(t), x > 0, t ∈ (0,T), where q ≥ 0, T > 0, u ∈ L∞(0,T) is a control. This system is considered in the Sobolev spaces.

Controllability problems for the 1-D wave equation on a half-axis with the Dirichlet boundary control

Larissa V. Fardigola (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper necessary and sufficient conditions of L∞-controllability and approximate L∞-controllability are obtained for the control system wtt = wxx − q2w, w(0,t) = u(t), x > 0, t ∈ (0,T), where q ≥ 0, T > 0, u ∈ L∞(0,T) is a control. This system is considered in the Sobolev spaces.

Controller design for bush-type 1-d wave networks∗

Yaxuan Zhang, Genqi Xu (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...

Currently displaying 1 – 20 of 58

Page 1 Next