Displaying 21 – 40 of 55

Showing per page

On the importance of solid deformations in convection-dominated liquid/solid phase change of pure materials

Daniela Mansutti, Edoardo Bucchignani (2011)

Applications of Mathematics

We analyse the effect of the mechanical response of the solid phase during liquid/solid phase change by numerical simulation of a benchmark test based on the well-known and debated experiment of melting of a pure gallium slab counducted by Gau & Viskanta in 1986. The adopted mathematical model includes the description of the melt flow and of the solid phase deformations. Surprisingly the conclusion reached is that, even in this case of pure material, the contribution of the solid phase to the...

On the inequalities associated with a model of Graffi for the motion of a mixture of two viscous, incompressible fluids

Giovanni Prouse, Anna Zaretti (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We demonstrate a theorem of existence and uniqueness on a large scale of the solution of a system of differential disequations associated to a Graffi model relative to the motion of two incompressible viscous fluids.

On the modeling of the transport of particles in turbulent flows

Thierry Goudon, Frédéric Poupaud (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We investigate different asymptotic regimes for Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.

On the modeling of the transport of particles in turbulent flows

Thierry Goudon, Frédéric Poupaud (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We investigate different asymptotic regimes for Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.

Currently displaying 21 – 40 of 55