On the stationary motion of compressible viscous fluids
We give the estimate for the Stokes semigroup in a perturbed half-space and some global in time existence theorems for small solutions to the Navier-Stokes equation.
In this paper, we study the nonstationary Stokes equation with Neumann boundary condition in a bounded or an exterior domain in ℝⁿ, which is the linearized model problem of the free boundary value problem. Mainly, we prove estimates for the semigroup of the Stokes operator. Comparing with the non-slip boundary condition case, we have the better decay estimate for the gradient of the semigroup in the exterior domain case because of the null force at the boundary.
We study solutions of the steady Navier-Stokes equations in a bounded 2D domain with the slip boundary conditions admitting flow across the boundary. We show conditions guaranteeing uniqueness of the solution. Next, we examine the structure of the solution considering an approximation given by a natural linearization. Suitable error estimates are also obtained.
The aim of this paper is to prove some properties of the solution to the Cauchy problem for the system of partial differential equations describing thermoelasticity of nonsimple materials proposed by D. Iesan. Explicit formulas for the Fourier transform and some estimates in Sobolev spaces for the solution of the Cauchy problem are proved.
2000 Mathematics Subject Classification: Primary: 34B40; secondary: 35Q51, 35Q53By using the Deift–Trubowitz transformations for adding or removing bound states to the spectrum of the Schrödinger operator on the line we construct a simple algorithm allowing one to reduce the problem of deriving symplectic expansions to its simplest case when the spectrum is purely continuous, and vice versa. We also obtain the transformation formulas for the correponding recursion operator. As an illustration of...
We analyze the compressible isentropic Navier–Stokes equations (Lions, 1998) in the two-dimensional case with . These equations also modelize the shallow water problem in height-flow rate formulation used to solve the flow in lakes and perfectly well-mixed sea. We establish a convergence result for the time-discretized problem when the momentum equation and the continuity equation are solved with the Galerkin method, without adding a penalization term in the continuity equation as it is made in...
We analyze the compressible isentropic Navier–Stokes equations (Lions, 1998) in the two-dimensional case with . These equations also modelize the shallow water problem in height-flow rate formulation used to solve the flow in lakes and perfectly well-mixed sea. We establish a convergence result for the time-discretized problem when the momentum equation and the continuity equation are solved with the Galerkin method, without adding a penalization term in the continuity equation as it is made in Lions...