Previous Page 5

Displaying 81 – 82 of 82

Showing per page

Dynamics of Singularity Surfaces for Compressible Navier-Stokes Flows in Two Space Dimensions

David Hoff (2001)

Journées équations aux dérivées partielles

We prove the global existence of solutions of the Navier-Stokes equations of compressible, barotropic flow in two space dimensions with piecewise smooth initial data. These solutions remain piecewise smooth for all time, retaining simple jump discontinuities in the density and in the divergence of the velocity across a smooth curve, which is convected with the flow. The strengths of these discontinuities are shown to decay exponentially in time, more rapidly for larger acoustic speeds and smaller...

Dynamique des points vortex dans une équation de Ginzburg-Landau complexe

Evelyne Miot (2009/2010)

Séminaire Équations aux dérivées partielles

On considère une équation de Ginzburg-Landau complexe dans le plan. On étudie un régime asymptotique à petit paramètre dans lequel les solutions comportent des singularités ponctuelles, appelées points vortex, et on détermine un système d’équations différentielles ordinaires du premier ordre décrivant la dynamique de ces points jusqu’au premier temps de collision.

Currently displaying 81 – 82 of 82

Previous Page 5