Complex timelike isothermic surfaces and their geometric transformations.
We establish a relationship between the word complexity and the number of generalized diagonals for a polygonal billiard. We conclude that in the rational case the complexity function has cubic upper and lower bounds. In the tiling case the complexity has cubic asymptotic growth.
Let be an ergodic translation on the compact group and a continuity set, i.e. a subset with topological boundary of Haar measure 0. An infinite binary sequence defined by if and otherwise, is called a Hartman sequence. This paper studies the growth rate of , where denotes the number of binary words of length occurring in . The growth rate is always subexponential and this result is optimal. If is an ergodic translation
We study the complexity of the infinite word associated with the Rényi expansion of in an irrational base . When is the golden ratio, this is the well known Fibonacci word, which is sturmian, and of complexity . For such that is finite we provide a simple description of the structure of special factors of the word . When we show that . In the cases when or we show that the first difference of the complexity function takes value in for every , and consequently we determine...
We study the complexity of the infinite word uβ associated with the Rényi expansion of 1 in an irrational base β > 1. When β is the golden ratio, this is the well known Fibonacci word, which is Sturmian, and of complexity C(n) = n + 1. For β such that dβ(1) = t1t2...tm is finite we provide a simple description of the structure of special factors of the word uβ. When tm=1 we show that C(n) = (m - 1)n + 1. In the cases when t1 = t2 = ... tm-1or t1 > max{t2,...,tm-1} we show that the first difference of...
Traitant la série de Poincaré d’un groupe discret d’isométries en courbure négative comme un noyau de Green, on établit une théorie du potentiel assez comparable à la théorie classique pour affirmer un parallèle entre densités conformes à la Patterson-Sullivan et densités harmoniques, et notamment définir une frontière de Martin où les densités ergodiques forment la partie minimale, et enfin l’identifier géométriquement sous hypothèse d’hyperbolicité.
The horseshoe or bucket handle continuum, defined as the inverse limit of the tent map, is one of the standard examples in continua theory as well as in dynamical systems. It is not arcwise connected. Its arcwise components coincide with composants, and with unstable manifolds in the dynamical setting. Knaster asked whether these composants are all homeomorphic, with the obvious exception of the zero composant. Partial results were obtained by Bellamy (1979), Dębski and Tymchatyn (1987), and Aarts...
In this paper, a new control concept for a class of underactuated mechanical system is introduced. Namely, the class of -link chains, composed of rigid links, non actuated at the pivot point is considered. Underactuated mechanical systems are those having less actuators than degrees of freedom and thereby requiring more sophisticated nonlinear control methods. This class of systems includes among others frequently used for the modeling of walking planar structures. This paper presents the stabilization...