Classification of recurrent domains for some holomorphic maps.
Nous étudions une classe de suites symboliques, les codages de rotations, intervenant dans des problèmes de répartition des suites et représentant une généralisation géométrique des suites sturmiennes. Nous montrons que ces suites peuvent être obtenues par itération de quatre substitutions définies sur un alphabet à trois lettres, puis en appliquant un morphisme de projection. L’ordre d’itération de ces applications est gouverné par un développement bi-dimensionnel de type “fraction continue”...
In this paper we consider the class of three-dimensional discrete maps M (x, y, z) = [φ(y), φ(z), φ(x)], where φ : ℝ → ℝ is an endomorphism. We show that all the cycles of the 3-D map M can be obtained by those of φ(x), as well as their local bifurcations. In particular we obtain that any local bifurcation is of co-dimension 3, that is three eigenvalues cross simultaneously the unit circle. As the map M exhibits coexistence...
Let be a substitution of Pisot type on the alphabet ; satisfies thestrong coincidence conditionif for every , there are integers such that and have the same -th letter, and the prefixes of length of and have the same image under the abelianization map. We prove that the strong coincidence condition is satisfied if and provide a partial result for .
We show that most compact semi-simple Lie groups carry many left invariant metrics with positive topological entropy. We also show that many homogeneous spaces admit collective Riemannian metrics arbitrarily close to the bi-invariant metric and whose geodesic flow has positive topological entropy. Other properties of collective geodesic flows are also discussed.
We give a characterization of the geometric automorphisms in a certain class of (not necessarily irreducible) free group automorphisms. When the automorphism is geometric, then it is induced by a pseudo-Anosov homeomorphism without interior singularities. An outer free group automorphism is given by a -cocycle of a -complex (a standard dynamical branched surface, see [7] and [9]) the fundamental group of which is the mapping-torus group of the automorphism. A combinatorial construction elucidates...
In this paper we study the commutativity property for topological sequence entropy. We prove that if is a compact metric space and are continuous maps then for every increasing sequence if , and construct a counterexample for the general case. In the interim, we also show that the equality is true if but does not necessarily hold if is an arbitrary compact metric space.
The system of Abel equations α(ft(x)) = α(x) + λ(t), t ∈ T, is studied under the general assumption that are pairwise commuting homeomorphisms of a real interval and have no fixed points (T is an arbitrary non-empty set). A result concerning embeddability of rational iteration groups in continuous groups is proved as a simple consequence of the obtained theorems.
The paper is dedicated to the study of the problem of existence of compact global chaotic attractors of discrete control systems and to the description of its structure. We consider so called switched systems with discrete time xn+1 = fν(n)(xn), where ν : ℤ+ ⃗ {1,2,...,m}. If m ≥ 2 we give sufficient conditions (the family M := {f1,f2,...,fm} of functions is contracting in the extended sense) for the existence of a compact global chaotic attractor. We study this problem in the framework of non-autonomous...
Let be an ergodic translation on the compact group and a continuity set, i.e. a subset with topological boundary of Haar measure 0. An infinite binary sequence defined by if and otherwise, is called a Hartman sequence. This paper studies the growth rate of , where denotes the number of binary words of length occurring in . The growth rate is always subexponential and this result is optimal. If is an ergodic translation
We study the complexity of the infinite word associated with the Rényi expansion of in an irrational base . When is the golden ratio, this is the well known Fibonacci word, which is sturmian, and of complexity . For such that is finite we provide a simple description of the structure of special factors of the word . When we show that . In the cases when or we show that the first difference of the complexity function takes value in for every , and consequently we determine...
We study the complexity of the infinite word uβ associated with the Rényi expansion of 1 in an irrational base β > 1. When β is the golden ratio, this is the well known Fibonacci word, which is Sturmian, and of complexity C(n) = n + 1. For β such that dβ(1) = t1t2...tm is finite we provide a simple description of the structure of special factors of the word uβ. When tm=1 we show that C(n) = (m - 1)n + 1. In the cases when t1 = t2 = ... tm-1or t1 > max{t2,...,tm-1} we show that the first difference of...
Let denote the family of continuous maps from an interval into itself such that (1) ; (2) they consist of two monotone pieces; and (3) they have periodic points of periods exactly all powers of . The main aim of this paper is to compute explicitly the topological sequence entropy of any map respect to the sequence .