Loading [MathJax]/extensions/MathZoom.js
Displaying 341 –
360 of
713
The local deformations of a submanifold under the effect of a smooth dynamical system are studied with the help of Oseledets’ multiplicative ergodic theorem. Equivalence classes of submanifolds, called jets, are introduced in order to describe these local deformations. They identify submanifolds having the same approximations up to some order at a given point. For every order , a condition on the Lyapunov exponents of the dynamical system is established insuring the convergence of the -jet of...
We classify reversible measures for the stable foliation on manifolds which are infinite covers of compact negatively curved manifolds. We extend the known results from hyperbolic surfaces to varying curvature and to all dimensions.
For the full shift (Σ₂,σ) on two symbols, we construct an invariant distributionally ϵ-scrambled set for all 0 < ϵ < diam Σ₂ in which each point is transitive, but not weakly almost periodic.
We study a diophantine property for translation surfaces, defined in terms of saddle connections and inspired by classical Khinchin condition. We prove that the same dichotomy holds as in Khinchin theorem, then we deduce a sharp estimate on how fast the typical Teichmüller geodesic wanders towards infinity in the moduli space of translation surfaces. Finally we prove some stronger result in genus one.
In this paper, we compare two definitions of Rauzy classes. The first one was introduced by Rauzy and was in particular used by Veech to prove the ergodicity of the Teichmüller flow. The second one is more recent and uses a “labeling” of the underlying intervals, and was used in the proof of some recent major results about the Teichmüller flow.The Rauzy diagrams obtained from the second definition are coverings of the initial ones. In this paper, we give a formula that gives the degree of this covering.This...
Currently displaying 341 –
360 of
713