Displaying 161 – 180 of 712

Showing per page

Cyclicité finie des polycycles hyperboliques de champs de vecteurs du plan. Algorithme de finitude

Abderaouf Mourtada (1991)

Annales de l'institut Fourier

Utilisant le Théorème de Normalisation de Mourtada (Lect. Notes. in Math., no 1445, pp. 272-314), on montre que les polycycles hyperboliques et génériques sont de cyclicité finie dans les familles C de champs de vecteurs du plan. Ceci implique que le 16e problème de Hilbert est localement vrai sur un ouvert dense dans l’espace des champs de vecteurs polynomiaux du plan de degré n .

Decay of correlations for nonuniformly expanding systems

Sébastien Gouëzel (2006)

Bulletin de la Société Mathématique de France

We estimate the speed of decay of correlations for general nonuniformly expanding dynamical systems, using estimates on the time the system takes to become really expanding. Our method can deal with fast decays, such as exponential or stretched exponential. We prove in particular that the correlations of the Alves-Viana map decay in O ( e - c n ) .

Defining complete and observable chaos

Víctor Jiménez López (1996)

Annales Polonici Mathematici

For a continuous map f from a real compact interval I into itself, we consider the set C(f) of points (x,y) ∈ I² for which l i m i n f n | f n ( x ) - f n ( y ) | = 0 and l i m s u p n | f n ( x ) - f n ( y ) | > 0 . We prove that if C(f) has full Lebesgue measure then it is residual, but the converse may not hold. Also, if λ² denotes the Lebesgue measure on the square and Ch(f) is the set of points (x,y) ∈ C(f) for which neither x nor y are asymptotically periodic, we show that λ²(C(f)) > 0 need not imply λ²(Ch(f)) > 0. We use these results to propose some plausible definitions...

Déformations de flots d'Anosov et de groupes fuchsiens

Étienne Ghys (1992)

Annales de l'institut Fourier

Nous étudions les flots d’Anosov sur les variétés compactes de dimension 3 pour lesquels les distributions stable et instable faibles sont de classe C . Nous classons tous ces flots lorsqu’ils préservent le volume puis nous construisons une famille d’exemples qui ne préservent pas le volume. Nous classons aussi ces flots sous une hypothèse de “pincement”. En application, nous décrivons les déformations des groupes fuchsiens dans le groupe des difféomorphismes du cercle.

Dense chaos

Ľubomír Snoha (1992)

Commentationes Mathematicae Universitatis Carolinae

According to A. Lasota, a continuous function f from a real compact interval I into itself is called generically chaotic if the set of all points ( x , y ) , for which lim inf n | f n ( x ) - f n ( y ) | = 0 and lim sup n | f n ( x ) - f n ( y ) | > 0 , is residual in I × I . Being inspired by this definition we say that f is densely chaotic if this set is dense in I × I . A characterization of the generically chaotic functions is known. In the paper the densely chaotic functions are characterized and it is proved that in the class of piecewise monotone maps with finite number of pieces the...

Density estimation for one-dimensional dynamical systems

Clémentine Prieur (2001)

ESAIM: Probability and Statistics

In this paper we prove a Central Limit Theorem for standard kernel estimates of the invariant density of one-dimensional dynamical systems. The two main steps of the proof of this theorem are the following: the study of rate of convergence for the variance of the estimator and a variation on the Lindeberg–Rio method. We also give an extension in the case of weakly dependent sequences in a sense introduced by Doukhan and Louhichi.

Density Estimation for One-Dimensional Dynamical Systems

Clémentine Prieur (2010)

ESAIM: Probability and Statistics

In this paper we prove a Central Limit Theorem for standard kernel estimates of the invariant density of one-dimensional dynamical systems. The two main steps of the proof of this theorem are the following: the study of rate of convergence for the variance of the estimator and a variation on the Lindeberg–Rio method. We also give an extension in the case of weakly dependent sequences in a sense introduced by Doukhan and Louhichi.

Density of the set of symbolic dynamics with all ergodic measures supported on periodic orbits

Tatiane Cardoso Batista, Juliano dos Santos Gonschorowski, Fabio Armando Tal (2015)

Fundamenta Mathematicae

Let K be the Cantor set. We prove that arbitrarily close to a homeomorphism T: K → K there exists a homeomorphism T̃: K → K such that the ω-limit of every orbit is a periodic orbit. We also prove that arbitrarily close to an endomorphism T: K → K there exists an endomorphism T̃: K → K with every orbit finally periodic.

Determination of phase-space reconstruction parameters of chaotic time series

Wei-Dong Cai, Yi-Qing Qin, Bing Ru Yang (2008)

Kybernetika

A new method called C-C-1 method is suggested, which can improve some drawbacks of the original C-C method. Based on the theory of period N, a new quantity S(t) for estimating the delay time window of a chaotic time series is given via direct computing a time-series quantity S(m,N,r,t), from which the delay time window can be found. The optimal delay time window is taken as the first period of the chaotic time series with a local minimum of S(t). Only the first local minimum of the average of a...

Déviations de moyennes ergodiques, flots de Teichmüller et cocycle de Kontsevich-Zorich

Raphaël Krikorian (2003/2004)

Séminaire Bourbaki

Étant donnée une fonction régulière de moyenne nulle sur le tore de dimension 2 , il est facile de voir que ses intégrales ergodiques au-dessus d’un flot de translation “générique”sont bornées. Il y a une dizaine d’années, A. Zorich a observé numériquement une croissance en puissance du temps de ces intégrales ergodiques au-dessus de flots d’hamiltoniens (non-exacts) “génériques”sur des surfaces de genre supérieur ou égal à 2 , et Kontsevich et Zorich ont proposé une explication (conjecturelle) de...

Currently displaying 161 – 180 of 712