Displaying 121 – 140 of 433

Showing per page

Error rates in the Darling-Kac law

Dalia Terhesiu (2014)

Studia Mathematica

This work provides rates of convergence in the Darling-Kac law for infinite measure preserving Pomeau-Manneville (unit interval) maps. Along the way we obtain error rates for the stable law associated with the first return map and the first return time to some suitable set inside the unit interval.

Étude d’une transformation non uniformément hyperbolique de l’intervalle [ 0 , 1 [

Albert Raugi (2004)

Bulletin de la Société Mathématique de France

Nous étudions un exemple de transformation non uniformément hyperbolique de l’intervalle [ 0 , 1 [ . Des exemples analogues ont été étudiés par de nombreux auteurs. Notre méthode utilise une théorie spectrale, pour une classe d’opérateurs vérifiant des conditions faibles de Doeblin-Fortet, introduite dans [1]. Elle nous permet, en particulier, de donner une estimation de la vitesse de décroissance des corrélations pour des fonctions non höldériennes.

Exact covering maps of the circle without (weak) limit measure

Roland Zweimüller (2002)

Colloquium Mathematicae

We construct maps T on the interval and on the circle which are Lebesgue exact preserving an absolutely continuous infinite measure μ ≪ λ, such that for any probability measure ν ≪ λ the sequence ( n - 1 k = 0 n - 1 ν T - k ) n 1 of arithmetical averages of image measures does not converge weakly.

Examples of minimal diffeomorphisms on 𝕋² semiconjugate to an ergodic translation

Alejandro Passeggi, Martín Sambarino (2013)

Fundamenta Mathematicae

We prove that for every ϵ > 0 there exists a minimal diffeomorphism f: ² → ² of class C 3 - ϵ and semiconjugate to an ergodic translation with the following properties: zero entropy, sensitivity to initial conditions, and Li-Yorke chaos. These examples are obtained through the holonomy of the unstable foliation of Mañé’s example of a derived-from-Anosov diffeomorphism on ³.

Existence d’un feuilletage positivement transverse à un homéomorphisme de surface

Olivier Jaulent (2014)

Annales de l’institut Fourier

Le Calvez a montré que si F est un homéomorphisme isotope à l’identité d’une surface M admettant un relèvement F ˜ au revêtement universel n’ayant pas de points fixes, alors il existe un feuilletage topologique de M transverse à la dynamique. Nous montrons que ce résultat se généralise au cas où F ˜ admet des points fixes. Nous obtenons alors un feuilletage topologique singulier transverse à la dynamique dont les singularités sont un ensemble fermé de points fixes de  F .

Existence of quadratic Hubbard trees

Henk Bruin, Alexandra Kaffl, Dierk Schleicher (2009)

Fundamenta Mathematicae

A (quadratic) Hubbard tree is an invariant tree connecting the critical orbit within the Julia set of a postcritically finite (quadratic) polynomial. It is easy to read off the kneading sequences from a quadratic Hubbard tree; the result in this paper handles the converse direction. Not every sequence on two symbols is realized as the kneading sequence of a real or complex quadratic polynomial. Milnor and Thurston classified all real-admissible sequences, and we give a classification of all complex-admissible...

Fixed points of discrete nilpotent group actions on S 2

Suely Druck, Fuquan Fang, Sebastião Firmo (2002)

Annales de l’institut Fourier

We prove that for each integer k 2 there is an open neighborhood 𝒱 k of the identity map of the 2-sphere S 2 , in C 1 topology such that: if G is a nilpotent subgroup of Diff 1 ( S 2 ) with length k of nilpotency, generated by elements in 𝒱 k , then the natural G -action on S 2 has nonempty fixed point set. Moreover, the G -action has at least two fixed points if the action has a finite nontrivial orbit.

Flowability of plane homeomorphisms

Frédéric Le Roux, Anthony G. O’Farrell, Maria Roginskaya, Ian Short (2012)

Annales de l’institut Fourier

We describe necessary and sufficient conditions for a fixed point free planar homeomorphism that preserves the standard Reeb foliation to embed in a planar flow that leaves the foliation invariant.

Flows of flowable Reeb homeomorphisms

Shigenori Matsumoto (2012)

Annales de l’institut Fourier

We consider a fixed point free homeomorphism h of the closed band B = × [ 0 , 1 ] which leaves each leaf of a Reeb foliation on B invariant. Assuming h is the time one of various topological flows, we compare the restriction of the flows on the boundary.

For almost every tent map, the turning point is typical

Henk Bruin (1998)

Fundamenta Mathematicae

Let T a be the tent map with slope a. Let c be its turning point, and μ a the absolutely continuous invariant probability measure. For an arbitrary, bounded, almost everywhere continuous function g, it is shown that for almost every a, ʃ g d μ a = l i m n 1 n i = 0 n - 1 g ( T a i ( c ) ) . As a corollary, we deduce that the critical point of a quadratic map is generically not typical for its absolutely continuous invariant probability measure, if it exists.

Currently displaying 121 – 140 of 433