Displaying 41 – 60 of 912

Showing per page

Abelian integrals related to Morse polynomials and perturbations of plane hamiltonian vector fields

Lubomir Gavrilov (1999)

Annales de l'institut Fourier

Let 𝒜 be the real vector space of Abelian integrals I ( h ) = { H h } R ( x , y ) d x d y , h [ 0 , h ˜ ] where H ( x , y ) = ( x 2 + y 2 ) / 2 + ... is a fixed real polynomial, R ( x , y ) is an arbitrary real polynomial and { H h } , h [ 0 , h ˜ ] , is the interior of the oval of H which surrounds the origin and tends to it as h 0 . We prove that if H ( x , y ) is a semiweighted homogeneous polynomial with only Morse critical points, then 𝒜 is a free finitely generated module over the ring of real polynomials [ h ] , and compute its rank. We find the generators of 𝒜 in the case when H is an arbitrary cubic polynomial. Finally we...

Actions localement libres de groupes résolubles

Michel Belliart, Olivier Birembaux (1994)

Annales de l'institut Fourier

Soient G un groupe de Lie connexe de dimension n - 1 , Φ une action localement libre de classe C r ( r 2 ) de G sur une variété compacte M de dimension n 3 . Nous supposons qu’il existe dans l’algèbre de Lie de G un champ Y tel que les valeurs propres de ad ( Y ) soient α 1 , ... , α n - 2 , 0 avec Re ( α i ) < 0 i . Alors, nous montrons que Φ est C r -conjuguée à une “action modèle" de G sur un espace homogène H / Γ H est un groupe de Lie contenant G . Si n 4 , H est uniquement déterminé par G ; si n = 3 , il y a deux groupes H possibles, et nous pouvons donc donner une...

Adjoint methods for obstacle problems and weakly coupled systems of PDE

Filippo Cagnetti, Diogo Gomes, Hung Vinh Tran (2013)

ESAIM: Control, Optimisation and Calculus of Variations

The adjoint method, recently introduced by Evans, is used to study obstacle problems, weakly coupled systems, cell problems for weakly coupled systems of Hamilton − Jacobi equations, and weakly coupled systems of obstacle type. In particular, new results about the speed of convergence of some approximation procedures are derived.

Affinor structures in the oscillation theory

Boris N. Shapukov (2002)

Banach Center Publications

In this paper we consider the system of Hamiltonian differential equations, which determines small oscillations of a dynamical system with n parameters. We demonstrate that this system determines an affinor structure J on the phase space TRⁿ. If J² = ωI, where ω = ±1,0, the phase space can be considered as the biplanar space of elliptic, hyperbolic or parabolic type. In the Euclidean case (Rⁿ = Eⁿ) we obtain the Hopf bundle and its analogs. The bases of these bundles are, respectively, the projective...

Currently displaying 41 – 60 of 912