Continuation of relative periodic orbits in a class of triatomic hamiltonian systems
We prove some stability results for a certain class of periodic solutions of nonautonomous Hamiltonian systems in the case of Hamiltonian functions either with subquadratic growth or homogeneous with superquadratic growth. Thus we extend to the nonautonomous case some results recently established by the Authors for the autonomous case.
We study two classes of linear representations of a surface group: Hitchin and maximal symplectic representations. We relate them to cross ratios and thus deduce that they are displacing which means that their translation lengths are roughly controlled by the translations lengths on the Cayley graph. As a consequence, we show that the mapping class group acts properly on the space of representations and that the energy functional associated to such a representation is proper. This implies the existence...