The algebraic Bethe Ansatz and vacuum vectors.
We consider the following Hamiltonian equation on the Hardy space on the circle,where is the Szegő projector. This equation can be seen as a toy model for totally non dispersive evolution equations. We display a Lax pair structure for this equation. We prove that it admits an infinite sequence of conservation laws in involution, and that it can be approximated by a sequence of finite dimensional completely integrable Hamiltonian systems. We establish several instability phenomena illustrating...
The differential-geometric and topological structure of Delsarte transmutation operators and their associated Gelfand-Levitan-Marchenko type eqautions are studied along with classical Dirac type operator and its multidimensional affine extension, related with selfdual Yang-Mills eqautions. The construction of soliton-like solutions to the related set of nonlinear dynamical system is discussed.
We propose a new family of natural generalizations of the pentagram map from 2D to higher dimensions and prove their integrability on generic twisted and closed polygons. In dimension there are such generalizations called dented pentagram maps, and we describe their geometry, continuous limit, and Lax representations with a spectral parameter. We prove algebraic-geometric integrability of the dented pentagram maps in the 3D case and compare the dimensions of invariant tori for the dented maps...
A new algorithm for finding separation coordinates is tested on the example of Kowalev ski’s top.
For the Abel equation on a real-analytic manifold a dynamical criterion of solvability in real-analytic functions is proved.