Loading [MathJax]/extensions/MathZoom.js
Displaying 21 –
40 of
165
In this article we introduce the notion of a minimal attractor for families of operators that do not necessarily form semigroups. We then obtain some results on the existence of the minimal attractor. We also consider the nonautonomous case. As an application, we obtain the existence of the minimal attractor for models of Cahn-Hilliard equations in deformable elastic continua.
We study the asymptotic behaviour of solutions of a reaction-diffusion equation in the whole space driven by a spatially homogeneous Wiener process with finite spectral measure. The existence of a random attractor is established for initial data in suitable weighted -space in any dimension, which complements the result from P. W. Bates, K. Lu, and B. Wang (2013). Asymptotic compactness is obtained using elements of the method of short trajectories.
A class of infinite-dimensional dissipative dynamical systems is defined for which there exists a unique equilibrium point, and the rate of convergence to this point of the trajectories of a dynamical system from the above class is exponential. All the trajectories of the system converge to this point as t → +∞, no matter what the initial conditions are. This class consists of strongly dissipative systems. An example of such systems is provided by passive systems in network theory (see, e.g., MR0601947...
In this paper, we consider the Swift–Hohenberg equation with perturbed boundary conditions. We do not a priori know the eigenfunctions for the linearized problem since the symmetry of the problem is broken by perturbation. We show that how the neutral stability curves change and, as a result, how the bifurcation diagrams change by the perturbation of the boundary conditions.
Global solvability and asymptotics of semilinear parabolic Cauchy problems in are considered. Following the approach of A. Mielke [15] these problems are investigated in weighted Sobolev spaces. The paper provides also a theory of second order elliptic operators in such spaces considered over , . In particular, the generation of analytic semigroups and the embeddings for the domains of fractional powers of elliptic operators are discussed.
In this paper we summarize an abstract approach to inertial manifolds for nonautonomous dynamical systems. Our result on the existence of inertial manifolds requires only two geometrical assumptions, called cone invariance and squeezing property, and some additional technical assumptions like boundedness or smoothing properties. We apply this result to processes (two-parameter semiflows) generated by nonautonomous semilinear parabolic evolution equations.
We formulate two results on controllability properties of the 3D Navier–Stokes (NS) system. They concern the approximate controllability and exact controllability in finite-dimensional projections of the problem in question. As a consequence, we obtain the existence of a strong solution of the Cauchy problem for the 3D NS system with an arbitrary initial function and a large class of right-hand sides. We also discuss some qualitative properties of admissible weak solutions for randomly forced NS...
In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...
In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...
In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...
It is established convergence to a particular equilibrium for weak solutions of abstract linear equations of the second order in time associated with monotone operators with nontrivial kernel. Concerning nonlinear hyperbolic equations with monotone and conservative potentials, it is proved a general asymptotic convergence result in terms of weak and strong topologies of appropriate Hilbert spaces. It is also considered the stabilization of a particular equilibrium via the introduction of an asymptotically...
It is established convergence to a particular equilibrium for weak solutions of abstract linear
equations of the second order in time associated with monotone operators with nontrivial kernel. Concerning nonlinear
hyperbolic equations with monotone and conservative potentials, it is proved a general asymptotic convergence result
in terms of weak and strong topologies of appropriate Hilbert spaces. It is also considered the stabilization of a
particular equilibrium via the introduction of an asymptotically...
Currently displaying 21 –
40 of
165