Displaying 21 – 40 of 53

Showing per page

La filtration canonique par les pentes d’un module aux q -différences et le gradué associé

Jacques Sauloy (2004)

Annales de l’institut Fourier

Nous montrons que le polygone de Newton d’une équation aux q -différences linéaire ne dépend que du module aux q -différences correspondant. Nous interprétons les résultats classiques de factorisation convergente de Adams-Birkhoff-Guenther en termes d’existence d’une filtration canonique par les pentes. De plus, le gradué associé possède d’excellentes propriétés fonctorielles et tensorielles.

Mathematical structures behind supersymmetric dualities

Ilmar Gahramanov (2015)

Archivum Mathematicum

The purpose of these notes is to give a short survey of an interesting connection between partition functions of supersymmetric gauge theories and hypergeometric functions and to present the recent progress in this direction.

On Hardy q -inequalities

Lech Maligranda, Ryskul Oinarov, Lars-Erik Persson (2014)

Czechoslovak Mathematical Journal

Some q -analysis variants of Hardy type inequalities of the form 0 b x α - 1 0 x t - α f ( t ) d q t p d q x C 0 b f p ( t ) d q t with sharp constant C are proved and discussed. A similar result with the Riemann-Liouville operator involved is also proved. Finally, it is pointed out that by using these techniques we can also obtain some new discrete Hardy and Copson type inequalities in the classical case.

On q -summation and confluence

Lucia Di Vizio, Changgui Zhang (2009)

Annales de l’institut Fourier

This paper is divided in two parts. In the first part we study a convergent q -analog of the divergent Euler series, with q ( 0 , 1 ) , and we show how the Borel sum of a generic Gevrey formal solution to a differential equation can be uniformly approximated on a convenient sector by a meromorphic solution of a corresponding q -difference equation. In the second part, we work under the assumption q ( 1 , + ) . In this case, at least four different q -Borel sums of a divergent power series solution of an irregular singular...

Opial inequalities on time scales

Martin Bohner, Bıllûr Kaymakçalan (2001)

Annales Polonici Mathematici

We present a version of Opial's inequality for time scales and point out some of its applications to so-called dynamic equations. Such dynamic equations contain both differential equations and difference equations as special cases. Various extensions of our inequality are offered as well.

q-Heat Operator and q-Poisson’s Operator

Mabrouk, Hanène (2006)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 33D15, 33D90, 39A13In this paper we study the q-heat and q-Poisson’s operators associated with the q-operator ∆q (see[5]). We begin by summarizing some statements concerning the q-even translation operator Tx,q, defined by Fitouhi and Bouzeffour in [5]. Then, we establish some basic properties of the q-heat semi-group such as boundedness and positivity. In the second part, we introduce the q-Poisson operator P^t, and address its main properties. We show...

Representations of quantum groups and (conditionally) invariant q-difference equations

Vladimir Dobrev (1997)

Banach Center Publications

We give a systematic discussion of the relation between q-difference equations which are conditionally U q ( ) -invariant and subsingular vectors of Verma modules over U q ( ) (the Drinfeld-Jimbo q-deformation of a semisimple Lie algebra over ℂg or ℝ). We treat in detail the cases of the conformal algebra, = su(2,2), and its complexification, = sl(4). The conditionally invariant equations are the q-deformed d’Alembert equation and a new equation arising from a subsingular vector proposed by Bernstein-Gel’fand-Gel’fand....

Currently displaying 21 – 40 of 53