Almost-everywhere convergence of Fourier integrals for functions in Sobolev spaces, and an L2-localisation principle.
Almost-periodic solutions in various metrics (Stepanov, Weyl, Besicovitch) of higher-order differential equations with a nonlinear Lipschitz-continuous restoring term are investigated. The main emphasis is focused on a Lipschitz constant which is the same as for uniformly almost-periodic solutions treated in [A1] and much better than those from our investigations for differential systems in [A2], [A3], [AB], [ABL], [AK]. The upper estimates of for -almost-periods of solutions and their derivatives...
We prove an analogue of Gutzmer's formula for Hermite expansions. As a consequence we obtain a new proof of a characterisation of the image of L²(ℝⁿ) under the Hermite semigroup. We also obtain some new orthogonality relations for complexified Hermite functions.
We study some operators originating from classical Littlewood-Paley theory. We consider their modification with respect to our discontinuous setup, where the underlying process is the product of a one-dimensional Brownian motion and a d-dimensional symmetric stable process. Two operators in focus are the G* and area functionals. Using the results obtained in our previous paper, we show that these operators are bounded on . Moreover, we generalize a classical multiplier theorem by weakening its...
We study asymptotics of a class of extremal problems rₙ(A,ε) related to norm controlled inversion in Banach algebras. In a general setting we prove estimates that can be considered as quantitative refinements of a theorem of Jan-Erik Björk [1]. In the last section we specialize further and consider a class of analytic Beurling algebras. In particular, a question raised by Jan-Erik Björk in [1] is answered in the negative.
We prove: If then The constant is the best possible.