Displaying 121 – 140 of 181

Showing per page

An extension of a boundedness result for singular integral operators

Deniz Karlı (2016)

Colloquium Mathematicae

We study some operators originating from classical Littlewood-Paley theory. We consider their modification with respect to our discontinuous setup, where the underlying process is the product of a one-dimensional Brownian motion and a d-dimensional symmetric stable process. Two operators in focus are the G* and area functionals. Using the results obtained in our previous paper, we show that these operators are bounded on L p . Moreover, we generalize a classical multiplier theorem by weakening its...

An extremal problem in Banach algebras

Anders Olofsson (2001)

Studia Mathematica

We study asymptotics of a class of extremal problems rₙ(A,ε) related to norm controlled inversion in Banach algebras. In a general setting we prove estimates that can be considered as quantitative refinements of a theorem of Jan-Erik Björk [1]. In the last section we specialize further and consider a class of analytic Beurling algebras. In particular, a question raised by Jan-Erik Björk in [1] is answered in the negative.

An inequality for the coefficients of a cosine polynomial

Horst Alzer (1995)

Commentationes Mathematicae Universitatis Carolinae

We prove: If 1 2 + k = 1 n a k ( n ) cos ( k x ) 0 for all x [ 0 , 2 π ) , then 1 - a k ( n ) 1 2 k 2 n 2 for k = 1 , , n . The constant 1 / 2 is the best possible.

An inverse Sidon type inequality

S. Fridli (1993)

Studia Mathematica

Sidon proved the inequality named after him in 1939. It is an upper estimate for the integral norm of a linear combination of trigonometric Dirichlet kernels expressed in terms of the coefficients. Since the estimate has many applications for instance in L 1 convergence problems and summation methods with respect to trigonometric series, newer and newer improvements of the original inequality has been proved by several authors. Most of them are invariant with respect to the rearrangement of the coefficients....

An L q ( L ² ) -theory of the generalized Stokes resolvent system in infinite cylinders

Reinhard Farwig, Myong-Hwan Ri (2007)

Studia Mathematica

Estimates of the generalized Stokes resolvent system, i.e. with prescribed divergence, in an infinite cylinder Ω = Σ × ℝ with Σ n - 1 , a bounded domain of class C 1 , 1 , are obtained in the space L q ( ; L ² ( Σ ) ) , q ∈ (1,∞). As a preparation, spectral decompositions of vector-valued homogeneous Sobolev spaces are studied. The main theorem is proved using the techniques of Schauder decompositions, operator-valued multiplier functions and R-boundedness of operator families.

An M q ( ) -functional calculus for power-bounded operators on certain UMD spaces

Earl Berkson, T. A. Gillespie (2005)

Studia Mathematica

For 1 ≤ q < ∞, let q ( ) denote the Banach algebra consisting of the bounded complex-valued functions on the unit circle having uniformly bounded q-variation on the dyadic arcs. We describe a broad class ℐ of UMD spaces such that whenever X ∈ ℐ, the sequence space ℓ²(ℤ,X) admits the classes q ( ) as Fourier multipliers, for an appropriate range of values of q > 1 (the range of q depending on X). This multiplier result expands the vector-valued Marcinkiewicz Multiplier Theorem in the direction q >...

An observation on the Turán-Nazarov inequality

Omer Friedland, Yosef Yomdin (2013)

Studia Mathematica

The main observation of this note is that the Lebesgue measure μ in the Turán-Nazarov inequality for exponential polynomials can be replaced with a certain geometric invariant ω ≥ μ, which can be effectively estimated in terms of the metric entropy of a set, and may be nonzero for discrete and even finite sets. While the frequencies (the imaginary parts of the exponents) do not enter the original Turán-Nazarov inequality, they necessarily enter the definition of ω.

Currently displaying 121 – 140 of 181