Displaying 141 – 160 of 181

Showing per page

An uncertainty principle related to the Poisson summation formula

K. Gröchenig (1996)

Studia Mathematica

We prove a class of uncertainty principles of the form S g f 1 C ( x a f p + ω b f ̂ q ) , where S g f is the short time Fourier transform of f. We obtain a characterization of the range of parameters a,b,p,q for which such an uncertainty principle holds. Counter-examples are constructed using Gabor expansions and unimodular polynomials. These uncertainty principles relate the decay of f and f̂ to their behaviour in phase space. Two applications are given: (a) If such an inequality holds, then the Poisson summation formula is valid...

Analyse 2-microlocale et développementen série de chirps d'une fonction de Riemann et de ses généralisations

Daniel Boichu (1994)

Colloquium Mathematicae

En dimension 1 on analyse la fonction irrégulière r ( x ) = n = 1 n - p s i n ( n p x ) (p entier ≥ 2) en un point x 0 de dérivabilité (π est un tel point) et on démontre que le terme d’erreur est un chirp de classe (1 + 1/(2p-2), 1/(p-1), (p-1)/p). La fonction r(x) est dans l’espace 2-microlocal C x 0 s , s ' si et seulement si s+s’ ≤ 1 - 1/p et ps+s’≤ p - 1/2. En dimension 2, on obtient en (π,π) l’existence d’un plan tangent pour la surface z = m , n = 1 ( m 2 + n 2 ) - γ s i n ( m 2 x + n 2 y ) dès que γ>1.

Analysis of two step nilsequences

Bernard Host, Bryna Kra (2008)

Annales de l’institut Fourier

Nilsequences arose in the study of the multiple ergodic averages associated to Furstenberg’s proof of Szemerédi’s Theorem and have since played a role in problems in additive combinatorics. Nilsequences are a generalization of almost periodic sequences and we study which portions of the classical theory for almost periodic sequences can be generalized for two step nilsequences. We state and prove basic properties for two step nilsequences and give a classification scheme for them.

Anisotropic viscoelastic body subjected to the pulsating load

Jozef Sumec, Mária Minárová, Ľuboš Hruštinec (2023)

Applications of Mathematics

Constitutive equations of continuum mechanics of the solid phase of anisotropic material is focused in the paper. First, a synoptic one-dimensional Maxwell model is explored, subjected to arbitrary deformation load. The explicit form is derived for stress on strain dependence. Further, the analogous explicit constitutive equation is taken in three spatial dimensions and treated mathematically. Later on, a simply supported straight concrete beam reinforced by the steel fibres is taken as an investigated...

Approach regions for the square root of the Poisson kernel and boundary functions in certain Orlicz spaces

M. Brundin (2007)

Czechoslovak Mathematical Journal

If the Poisson integral of the unit disc is replaced by its square root, it is known that normalized Poisson integrals of L p and weak L p boundary functions converge along approach regions wider than the ordinary nontangential cones, as proved by Rönning and the author, respectively. In this paper we characterize the approach regions for boundary functions in two general classes of Orlicz spaces. The first of these classes contains spaces L Φ having the property L L Φ L p , 1 p < . The second contains spaces L Φ that...

Approximation by trigonometric polynomials in weighted Orlicz spaces

Daniyal M. Israfilov, Ali Guven (2006)

Studia Mathematica

We investigate the approximation properties of the partial sums of the Fourier series and prove some direct and inverse theorems for approximation by polynomials in weighted Orlicz spaces. In particular we obtain a constructive characterization of the generalized Lipschitz classes in these spaces.

Approximation et transfert d'opérateurs de convolution

Noël Lohoué (1976)

Annales de l'institut Fourier

Soient G 1 et G 2 deux groupes abéliens localement compacts de dual Γ 1 et Γ 2 . Soit h : Γ 1 Γ 2 un homomorphisme continu d’image dense de Γ 1 dans Γ 2 . Soit 1 p  ; on prouve un théorème d’approximation des multiplicateurs de F L p ( G 2 ) et on utilise ce résultat pour démontrer le suivant : soit m : Γ 2 C une fonction continue ; m est un multiplicateur de F L p ( G 2 ) si, et seulement si, m h est un multiplicateur de F L p ( G 1 ) .

Approximation in weighted generalized grand Lebesgue spaces

Daniyal M. Israfilov, Ahmet Testici (2016)

Colloquium Mathematicae

The direct and inverse problems of approximation theory in the subspace of weighted generalized grand Lebesgue spaces of 2π-periodic functions with the weights satisfying Muckenhoupt's condition are investigated. Appropriate direct and inverse theorems are proved. As a corollary some results on constructive characterization problems in generalized Lipschitz classes are presented.

Approximation of almost periodic functions by periodic ones

Alexander Fischer (1998)

Czechoslovak Mathematical Journal

It is not the purpose of this paper to construct approximations but to establish a class of almost periodic functions which can be approximated, with an arbitrarily prescribed accuracy, by continuous periodic functions uniformly on = ( - ; + ) .

Approximation of functions from L p ( ω ) β by general linear operators of their Fourier series

Włodzimierz Łenski, Bogdan Szal (2011)

Banach Center Publications

We show the general and precise conditions on the functions and modulus of continuity as well as on the entries of matrices generating the summability means and give the rates of approximation of functions from the generalized integral Lipschitz classes by double matrix means of their Fourier series. Consequently, we give some results on norm approximation. Thus we essentially extend and improve our earlier results [Acta Comment. Univ. Tartu. Math. 13 (2009), 11-24] and the result of S. Lal [Appl....

Currently displaying 141 – 160 of 181