Displaying 61 – 80 of 1022

Showing per page

A survey on wavelet methods for (geo) applications.

Willi Freeden, Thorsten Maier, Steffen Zimmermann (2003)

Revista Matemática Complutense

Wavelets originated in 1980's for the analysis of (seismic) signals and have seen an explosion of applications. However, almost all the material is based on wavelets over Euclidean spaces. This paper deals with an approach to the theory and algorithmic aspects of wavelets in a general separable Hilbert space framework. As examples Legendre wavelets on the interval [-1,+1] and scalar and vector spherical wavelets on the unit sphere 'Omega' are discussed in more detail.

A transplantation theorem for ultraspherical polynomials at critical index

J. J. Guadalupe, V. I. Kolyada (2001)

Studia Mathematica

We investigate the behaviour of Fourier coefficients with respect to the system of ultraspherical polynomials. This leads us to the study of the “boundary” Lorentz space λ corresponding to the left endpoint of the mean convergence interval. The ultraspherical coefficients c ( λ ) ( f ) of λ -functions turn out to behave like the Fourier coefficients of functions in the real Hardy space ReH¹. Namely, we prove that for any f λ the series n = 1 c ( λ ) ( f ) c o s n θ is the Fourier series of some function φ ∈ ReH¹ with | | φ | | R e H ¹ c | | f | | λ .

A uniform estimate for quartile operators.

Christoph Thiele (2002)

Revista Matemática Iberoamericana

There is a one parameter family of bilinear Hilbert transforms. Recently, some progress has been made to prove Lp estimates for these operators uniformly in the parameter. In the current article we present some of these techniques in a simplified model...

A version of the law of large numbers

Katusi Fukuyama (2001)

Colloquium Mathematicae

By the method of Rio [10], for a locally square integrable periodic function f, we prove ( f ( μ t x ) + . . . + f ( μ t x ) ) / n 0 1 f for almost every x and t > 0.

A wavelet characterization for weighted Hardy spaces.

Si Jue Wu (1992)

Revista Matemática Iberoamericana

In this article we give a wavelet area integral characterization for weighted Hardy spaces Hp(ω), 0 < p < ∞, with ω ∈ A∞. Our wavelet characterization establishes the identification between Hp(ω) and T2p (ω), the weighted discrete tent space, for 0 < p < ∞ and ω ∈ A∞. This allows us to use all the results of tent spaces for weighted Hardy spaces. In particular, we obtain the isomorphism between Hp(ω) and the dual space of Hp'(ω), where 1< p < ∞ and 1/p +...

A way of estimating the convergence rate of the Fourier method for PDE of hyperbolic type

Evgenii Pustylnik (2001)

Czechoslovak Mathematical Journal

The Fourier expansion in eigenfunctions of a positive operator is studied with the help of abstract functions of this operator. The rate of convergence is estimated in terms of its eigenvalues, especially for uniform and absolute convergence. Some particular results are obtained for elliptic operators and hyperbolic equations.

Abelova cena v roce 2017 udělena za teorii waveletů

Michal Křížek (2017)

Pokroky matematiky, fyziky a astronomie

Abelovu cenu za matematiku získal v roce 2017 francouzský matematik Yves Meyer za rozvoj teorie waveletů. V článku se seznámíme s jeho vědeckým životopisem, hlavní myšlenkou teorie waveletů a jejich použitím v praxi.

Adaptive convex optimization in Banach spaces: a multilevel approach

Claudio Canuto (2003)

Bollettino dell'Unione Matematica Italiana

This is mainly a review paper, concerned with some applications of the concept of Nonlinear Approximation to adaptive convex minimization. At first, we recall the basic ideas and we compare linear to nonlinear approximation for three relevant families of bases used in practice: Fourier bases, finite element bases, wavelet bases. Next, we show how nonlinear approximation can be used to design rigorously justified and optimally efficient adaptive methods to solve abstract minimization problems in...

Adaptive density estimation under weak dependence

Irène Gannaz, Olivier Wintenberger (2010)

ESAIM: Probability and Statistics

Assume that (Xt)t∈Z is a real valued time series admitting a common marginal density f with respect to Lebesgue's measure. [Donoho et al. Ann. Stat.24 (1996) 508–539] propose near-minimax estimators f ^ n based on thresholding wavelets to estimate f on a compact set in an independent and identically distributed setting. The aim of the present work is to extend these results to general weak dependent contexts. Weak dependence assumptions are expressed as decreasing bounds of covariance terms and are...

Adaptive wavelet methods for saddle point problems

Stephan Dahlke, Reinhard Hochmuth, Karsten Urban (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Recently, adaptive wavelet strategies for symmetric, positive definite operators have been introduced that were proven to converge. This paper is devoted to the generalization to saddle point problems which are also symmetric, but indefinite. Firstly, we investigate a posteriori error estimates and generalize the known adaptive wavelet strategy to saddle point problems. The convergence of this strategy for elliptic operators essentially relies on the positive definite character of the operator....

Currently displaying 61 – 80 of 1022