The search session has expired. Please query the service again.

Displaying 2301 – 2320 of 2683

Showing per page

Topological tensor products of a Fréchet-Schwartz space and a Banach space

Alfredo Peris (1993)

Studia Mathematica

We exhibit examples of countable injective inductive limits E of Banach spaces with compact linking maps (i.e. (DFS)-spaces) such that E ε X is not an inductive limit of normed spaces for some Banach space X. This solves in the negative open questions of Bierstedt, Meise and Hollstein. As a consequence we obtain Fréchet-Schwartz spaces F and Banach spaces X such that the problem of topologies of Grothendieck has a negative answer for F π X . This solves in the negative a question of Taskinen. We also give...

Topologies and bornologies determined by operator ideals, II

Ngai-Ching Wong (1994)

Studia Mathematica

Let be an operator ideal on LCS’s. A continuous seminorm p of a LCS X is said to be - continuous if Q ̃ p i n j ( X , X ̃ p ) , where X ̃ p is the completion of the normed space X p = X / p - 1 ( 0 ) and Q ̃ p is the canonical map. p is said to be a Groth()- seminorm if there is a continuous seminorm q of X such that p ≤ q and the canonical map Q ̃ p q : X ̃ q X ̃ p belongs to ( X ̃ q , X ̃ p ) . It is well known that when is the ideal of absolutely summing (resp. precompact, weakly compact) operators, a LCS X is a nuclear (resp. Schwartz, infra-Schwartz) space if and only if every continuous...

Topologies et bornologies nucléaires associées. Applications

Henri Hogbe-Nlend (1973)

Annales de l'institut Fourier

Le présent article est consacré à l’étude de la topologie nucléaire associée à une topologie localement convexe séparée arbitraire et ses applications. On utilise des techniques de Bornologie. On établit que tout espace ultra-bornologique, en particulier tout espace de Banach, est dual fort d’un espace nucléaire complet et on donne quelques applications de ce résultat. Nous montrons l’existence d’une large classe d’espaces nucléaires complets à bornés métrisables et à duals forts non nucléaires...

Topologies semi-vectorielles. Application à l'analyse complexe

Pierre Lelong (1975)

Annales de l'institut Fourier

On définit sur un espace vectoriel E une classe de topologies qui rendent la multiplication continue, mais ne sont pas vectorielles en général. Sur un espace complexe E elles permettent d’obtenir encore les principales propriétés des fonctions plurisousharmoniques. De telles topologies séparées sont localement pseudo-convexes (mais non localement convexes en général) : cette notion intervient dans les extensions données récemment par l’auteur du théorème de Banach-Steinhaus aux familles de polynômes...

Trace inequalities for spaces in spectral duality

O. Tikhonov (1993)

Studia Mathematica

Let (A,e) and (V,K) be an order-unit space and a base-norm space in spectral duality, as in noncommutative spectral theory of Alfsen and Shultz. Let t be a norm lower semicontinuous trace on A, and let φ be a nonnegative convex function on ℝ. It is shown that the mapping a → t(φ(a)) is convex on A. Moreover, the mapping is shown to be nondecreasing if so is φ. Some other similar statements concerning traces and real-valued functions are also obtained.

Currently displaying 2301 – 2320 of 2683