Triangularization of some families of operators on locally convex spaces
Some results concerning triangularization of some operators on locally convex spaces are established.
Some results concerning triangularization of some operators on locally convex spaces are established.
We discuss various results on the existence of ‘true’ preimages under continuous open maps between -spaces, -lattices and some other spaces. The aim of the paper is to provide accessible proofs of this sort of results for functional-analysts.
The purpose of this paper is to introduce some new generalized double difference sequence spaces using summability with respect to a two valued measure and an Orlicz function in -normed spaces which have unique non-linear structure and to examine some of their properties. This approach has not been used in any context before.