Displaying 2401 – 2420 of 2683

Showing per page

Uniform convexity and associate spaces

Petteri Harjulehto, Peter Hästö (2018)

Czechoslovak Mathematical Journal

We prove that the associate space of a generalized Orlicz space L φ ( · ) is given by the conjugate modular φ * even without the assumption that simple functions belong to the space. Second, we show that every weakly doubling Φ -function is equivalent to a doubling Φ -function. As a consequence, we conclude that L φ ( · ) is uniformly convex if φ and φ * are weakly doubling.

Uniform Kadec-Klee property and nearly uniform convexity in Köthe-Bochner sequence spaces

Paweł Kolwicz (2003)

Bollettino dell'Unione Matematica Italiana

The uniformly Kadec-Klee property in Köthe-Bochner sequence spaces E X , where E is a Köthe sequence space and X is an arbitrary separable Banach space, is studied. Namely, the question of whether or not this geometric property lifts from X and E to E X is examined. It is settled affirmatively in contrast to the case when E is a Köthe function space. As a corollary we get criteria for E X to be nearly uniformly convex.

Uniformly μ -continuous topologies on Köthe-Bochner spaces and Orlicz-Bochner spaces

Krzysztof Feledziak (1998)

Commentationes Mathematicae Universitatis Carolinae

Some class of locally solid topologies (called uniformly μ -continuous) on Köthe-Bochner spaces that are continuous with respect to some natural two-norm convergence are introduced and studied. A characterization of uniformly μ -continuous topologies in terms of some family of pseudonorms is given. The finest uniformly μ -continuous topology 𝒯 I ϕ ( X ) on the Orlicz-Bochner space L ϕ ( X ) is a generalized mixed topology in the sense of P. Turpin (see [11, Chapter I]).

Uniqueness of Cartesian Products of Compact Convex Sets

Zbigniew Lipecki, Viktor Losert, Jiří Spurný (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Let X i , i∈ I, and Y j , j∈ J, be compact convex sets whose sets of extreme points are affinely independent and let φ be an affine homeomorphism of i I X i onto j J Y j . We show that there exists a bijection b: I → J such that φ is the product of affine homeomorphisms of X i onto Y b ( i ) , i∈ I.

Uniqueness of unconditional bases of c 0 ( l p ) , 0 < p < 1

C. Leránoz (1992)

Studia Mathematica

We prove that if 0 < p < 1 then a normalized unconditional basis of a complemented subspace of c 0 ( l p ) must be equivalent to a permutation of a subset of the canonical unit vector basis of c 0 ( l p ) . In particular, c 0 ( l p ) has unique unconditional basis up to permutation. Bourgain, Casazza, Lindenstrauss, and Tzafriri have previously proved the same result for c 0 ( l ) .

Currently displaying 2401 – 2420 of 2683