Continuous Position and Existence Sets.
Let E be a locally convex topological Hausdorff space, K a nonempty compact convex subset of E, μ a regular Borel probability measure on E and γ > 0. We say that the measure μ γ-represents a point x ∈ K if for any f ∈ E*. In this paper a continuous version of the Choquet theorem is proved, namely, if P is a continuous multivalued mapping from a metric space T into the space of nonempty, bounded convex subsets of a Banach space X, then there exists a weak* continuous family of regular Borel...
In this article, we described the contracting mapping on normed linear space. Furthermore, we applied that mapping to ordinary differential equations on real normed space. Our method is based on the one presented by Schwarz [29].
In this paper we give necessary and sufficient conditions in order that a contractive projection on a complex -algebra satisfies Seever’s identity.
En este trabajo presentamos aportaciones al tratamiento no-standard del Análisis Funcional en dos direcciones. En la sección 2 la envoltura no-standard de un espacio vectorial topológico, introducida por Luxemburg [7] y por Henson y Moore [2] se aplica al caso de un álgebra topológica. En las secciones 3 y 4 se dan caracterizaciones de elementos accesibles (pre-near-standard) y casi-standard (near-standard) en espacios vectoriales topológicos en términos de una familia filtrante densa de subespacios...
A closed epigraph theorem for Jensen-convex mappings with values in Banach lattices with a strong unit is established. This allows one to reduce the examination of continuity of vector valued transformations to the case of convex real functionals. In particular, it is shown that a weakly continuous Jensen-convex mapping is continuous. A number of corollaries follow; among them, a characterization of continuous vector-valued convex transformations is given that answers a question raised by Ih-Ching...
Every relatively convex-compact convex subset of a locally convex space is contained in a Banach disc. Moreover, an upper bound for the class of sets which are contained in a Banach disc is presented. If the topological dual of a locally convex space is the -closure of the union of countably many -relatively countably compacts sets, then every weakly (relatively) convex-compact set is weakly (relatively) compact.