A Duality Theorem for Locally Convex Tensor Products.
Schauder’s Conjecture (i.eėvery compact convex set in a Hausdorff topological vector space has the f.p.p.) is reduced to the search for fixed points of suitable multivalued maps in finite dimensional spaces.
Distance metrics are at the core of many processing and machine learning algorithms. In many contexts, it is useful to compute the distance between data using multiple criteria. This naturally leads to consider vector-valued metrics, in which the distance is no longer a real positive number but a vector. In this paper, we propose a principled way to combine several metrics into either a scalar-valued or vector-valued metric. We illustrate our framework by reformulating the popular structural similarity...
We generalize a Theorem of Koldunov [2] and prove that a disjointness proserving quasi-linear operator between Resz spaces has the Hammerstein property.
If C is a non-empty convex subset of a real linear space E, p: E → ℝ is a sublinear function and f:C → ℝ is concave and such that f ≤ p on C, then there exists a linear function g:E → ℝ such that g ≤ p on E and f ≤ g on C. In this result of Hirano, Komiya and Takahashi we replace the sublinearity of p by convexity.
In this note an internal property of a ring of sets, named the Nested Partition Property, is shown to imply the Nikodym Property. A wide range of examples are shown to have this property.