Displaying 641 – 660 of 2679

Showing per page

Dualité des espaces de fonctions entières en dimension infinie

Thomas A. W. Dwyer III (1976)

Annales de l'institut Fourier

On étudie ici quelques espaces de fonctions holomorphes dans des domaines localement convexes, ayant comme cas particuliers les espaces de Fock holomorphes. Les espaces duaux sont caractérisés avec la transformation de Fourier-Borel pour des types d’holomorphie appropriés. On montre que ces espaces de fonctions sont de Fréchet-Schwartz (resp. de Silva, resp. nucléaires) quand leurs domaines sont des espaces de Silva (resp. de Fréchet-Schwartz, resp. nucléaires). Les conditions de croissance p -sommable...

Dunford-Pettis operators on the space of Bochner integrable functions

Marian Nowak (2011)

Banach Center Publications

Let (Ω,Σ,μ) be a finite measure space and let X be a real Banach space. Let L Φ ( X ) be the Orlicz-Bochner space defined by a Young function Φ. We study the relationships between Dunford-Pettis operators T from L¹(X) to a Banach space Y and the compactness properties of the operators T restricted to L Φ ( X ) . In particular, it is shown that if X is a reflexive Banach space, then a bounded linear operator T:L¹(X) → Y is Dunford-Pettis if and only if T restricted to L ( X ) is ( τ ( L ( X ) , L ¹ ( X * ) ) , | | · | | Y ) -compact.

Currently displaying 641 – 660 of 2679