Positive Approximate Identities and Lattice-Ordered Dual spaces.
A characterization of the structure of positive maps is presented. This sheds some more light on the old open problem studied both in Quantum Information and Operator Algebras. Our arguments are based on the concept of exposed points, links between tensor products and mapping spaces and convex analysis.
We present definitions of Banach spaces predual to Campanato spaces and Sobolev-Campanato spaces, respectively, and we announce some results on embeddings and isomorphisms between these spaces. Detailed proofs will appear in our paper in Math. Nachr.
For a balanced open subset of a Fréchet space and a dual-Banach space we introduce the topology on the space of holomorphic functions from into . This topology allows us to construct a predual for which in turn allows us to investigate the topological structure of spaces of vector-valued holomorphic functions. In particular, we are able to give necessary and sufficient conditions for the equivalence and compatibility of various topologies on spaces of vector-valued holomorphic functions....
In this paper we analyse a definition of a product of Banach spaces that is naturally associated by duality with a space of operators that can be considered as a generalization of the notion of space of multiplication operators. This dual relation allows to understand several constructions coming from different fields of functional analysis that can be seen as instances of the abstract one when a particular product is considered. Some relevant examples and applications are shown, regarding pointwise...
In this paper, denotes a complete, non-trivially valued, non-archimedean field. Sequences and infinite matrices have entries in The main purpose of this paper is to prove some product theorems involving the methods and in such fields
We introduce a notion of a product and projective limit of function spaces. We show that the Choquet boundary of the product space is the product of Choquet boundaries. Next we show that the product of simplicial spaces is simplicial. We also show that the maximal measures on the product space are exactly those with maximal projections. We show similar characterizations of the Choquet boundary and the space of maximal measures for the projective limit of function spaces under some additional assumptions...