Displaying 41 – 60 of 65

Showing per page

For a dense set of equivalent norms, a non-reflexive Banach space contains a triangle with no Chebyshev center

Libor Veselý (2001)

Commentationes Mathematicae Universitatis Carolinae

Let X be a non-reflexive real Banach space. Then for each norm | · | from a dense set of equivalent norms on X (in the metric of uniform convergence on the unit ball of X ), there exists a three-point set that has no Chebyshev center in ( X , | · | ) . This result strengthens theorems by Davis and Johnson, van Dulst and Singer, and Konyagin.

Fourier analysis, Schur multipliers on S p and non-commutative Λ(p)-sets

Asma Harcharras (1999)

Studia Mathematica

This work deals with various questions concerning Fourier multipliers on L p , Schur multipliers on the Schatten class S p as well as their completely bounded versions when L p and S p are viewed as operator spaces. For this purpose we use subsets of ℤ enjoying the non-commutative Λ(p)-property which is a new analytic property much stronger than the classical Λ(p)-property. We start by studying the notion of non-commutative Λ(p)-sets in the general case of an arbitrary discrete group before turning to the...

Fractional powers of operators, K-functionals, Ulyanov inequalities

Walter Trebels, Ursula Westphal (2010)

Banach Center Publications

Given an equibounded (₀)-semigroup of linear operators with generator A on a Banach space X, a functional calculus, due to L. Schwartz, is briefly sketched to explain fractional powers of A. Then the (modified) K-functional with respect to ( X , D ( ( - A ) α ) ) , α > 0, is characterized via the associated resolvent R(λ;A). Under the assumption that the resolvent satisfies a Nikolskii type inequality, | | λ R ( λ ; A ) f | | Y c φ ( 1 / λ ) | | f | | X , for a suitable Banach space Y, an Ulyanov inequality is derived. This will be of interest if one has good control...

Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields

Daniele Morbidelli (2000)

Studia Mathematica

We study the notion of fractional L p -differentiability of order s ( 0 , 1 ) along vector fields satisfying the Hörmander condition on n . We prove a modified version of the celebrated structure theorem for the Carnot-Carathéodory balls originally due to Nagel, Stein and Wainger. This result enables us to demonstrate that different W s , p -norms are equivalent. We also prove a local embedding W 1 , p W s , q , where q is a suitable exponent greater than p.

Fragmentability and compactness in C(K)-spaces

B. Cascales, G. Manjabacas, G. Vera (1998)

Studia Mathematica

Let K be a compact Hausdorff space, C p ( K ) the space of continuous functions on K endowed with the pointwise convergence topology, D ⊂ K a dense subset and t p ( D ) the topology in C(K) of pointwise convergence on D. It is proved that when C p ( K ) is Lindelöf the t p ( D ) -compact subsets of C(K) are fragmented by the supremum norm of C(K). As a consequence we obtain some Namioka type results and apply them to prove that if K is separable and C p ( K ) is Lindelöf, then K is metrizable if, and only if, there is a countable and dense...

Fragmentability and σ-fragmentability

J. Jayne, I. Namioka, C. Rogers (1993)

Fundamenta Mathematicae

Recent work has studied the fragmentability and σ-fragmentability properties of Banach spaces. Here examples are given that justify the definitions that have been used. The fragmentability and σ-fragmentability properties of the spaces and c ( Γ ) , with Γ uncountable, are determined.

Fragmentability of the Dual of a Banach Space with Smooth Bump

Kortezov, I. (1998)

Serdica Mathematical Journal

We prove that if a Banach space X admits a Lipschitz β-smooth bump function, then (X ∗ , weak ∗ ) is fragmented by a metric, generating a topology, which is stronger than the τβ -topology. We also use this to prove that if X ∗ admits a Lipschitz Gateaux-smooth bump function, then X is sigma-fragmentable.

Fragmentable mappings and CHART groups

Warren B. Moors (2016)

Fundamenta Mathematicae

The purpose of this note is two-fold: firstly, to give a new and interesting result concerning separate and joint continuity, and secondly, to give a stream-lined (and self-contained) proof of the fact that "tame" CHART groups are topological groups.

Fréchet-spaces-valued measures and the AL-property.

S. Okada, W. J. Ricker (2003)

RACSAM

Associated with every vector measure m taking its values in a Fréchet space X is the space L1(m) of all m-integrable functions. It turns out that L1(m) is always a Fréchet lattice. We show that possession of the AL-property for the lattice L1(m) has some remarkable consequences for both the underlying Fréchet space X and the integration operator f → ∫ f dm.

Fredholm multipliers of semisimple commutative Banach algebras.

Pietro Aiena (1991)

Extracta Mathematicae

In some recent papers ([1],[2],[3],[4]) we have investigated some general spectral properties of a multiplier defined on a commutative semi-simple Banach algebra. In this paper we expose some aspects concerning the Fredholm theory of multipliers.

Functional models and asymptotically orthonormal sequences

Isabelle Chalendar, Emmanuel Fricain, Dan Timotin (2003)

Annales de l’institut Fourier

Suppose H 2 is the Hardy space of the unit disc in the complex plane, while Θ is an inner function. We give conditions for a sequence of normalized reproducing kernels in the model space K Θ = H 2 Θ H 2 to be asymptotically close to an orthonormal sequence. The completeness problem is also investigated.

Currently displaying 41 – 60 of 65