Unconditional decompositions and local unconditional structures in some subspaces of , 1≤p<2
By a general Franklin system corresponding to a dense sequence = (tₙ, n ≥ 0) of points in [0,1] we mean a sequence of orthonormal piecewise linear functions with knots , that is, the nth function of the system has knots t₀, ..., tₙ. The main result of this paper is that each general Franklin system is an unconditional basis in , 1 < p < ∞.
We give a simple geometric characterization of knot sequences for which the corresponding orthonormal spline system of arbitrary order k is an unconditional basis in the atomic Hardy space H¹[0,1].
We prove that given any natural number k and any dense point sequence (tₙ), the corresponding orthonormal spline system is an unconditional basis in reflexive .
Soit un espace et soit un sous-espace réflexif de dimension infinie de . Nous montrons que le quotient vérifie le théorème de Grothendieck, c’est-à-dire que tout opérateur de dans un espace de Hilbert est 1-sommant; par ailleurs, n’est pas un espace . Cela permet de répondre négativement à une question de Lindenstrauss-Pełczyński ainsi qu’à une question similaire de Grothendieck.
We prove that the associate space of a generalized Orlicz space is given by the conjugate modular even without the assumption that simple functions belong to the space. Second, we show that every weakly doubling -function is equivalent to a doubling -function. As a consequence, we conclude that is uniformly convex if and are weakly doubling.
The aim of this paper is to show, among other things, that, in separable Banach spaces, the presence of the smoothness with the highest derivative Lipschitzian implies the uniform Gâteaux smoothness of degree 1 up.
We characterize the uniform non-squareness and the property of Besicovitch-Orlicz spaces of almost periodic functions equipped with Orlicz norm.
Some class of locally solid topologies (called uniformly -continuous) on Köthe-Bochner spaces that are continuous with respect to some natural two-norm convergence are introduced and studied. A characterization of uniformly -continuous topologies in terms of some family of pseudonorms is given. The finest uniformly -continuous topology on the Orlicz-Bochner space is a generalized mixed topology in the sense of P. Turpin (see [11, Chapter I]).
Étude des propriétés des unions et intersections d’espaces relatifs à un ensemble de mesures positives sur un groupe commutatif localement compact lorsque est invariant par translation ou stable par convolution.Dans des cas particuliers, on retrouve les propriétés d’espaces étudiés par A. Beurling et par B. Koremblium.On étudie aussi les espaces formés des fonctions appartenant localement à et qui ont un comportement à l’infini.