Displaying 221 – 240 of 1491

Showing per page

C*-algebras have a quantitative version of Pełczyński's property (V)

Hana Krulišová (2017)

Czechoslovak Mathematical Journal

A Banach space X has Pełczyński’s property (V) if for every Banach space Y every unconditionally converging operator T : X Y is weakly compact. H. Pfitzner proved that C * -algebras have Pełczyński’s property (V). In the preprint (Krulišová, (2015)) the author explores possible quantifications of the property (V) and shows that C ( K ) spaces for a compact Hausdorff space K enjoy a quantitative version of the property (V). In this paper we generalize this result by quantifying Pfitzner’s theorem. Moreover, we...

Canonical commutation relations and interacting Fock spaces

Zied Ammari (2004)

Journées Équations aux dérivées partielles

We introduce by means of reproducing kernel theory and decomposition in orthogonal polynomials canonical correspondences between an interacting Fock space a reproducing kernel Hilbert space and a square integrable functions space w.r.t. a cylindrical measure. Using this correspondences we investigate the structure of the infinite dimensional canonical commutation relations. In particular we construct test functions spaces, distributions spaces and a quantization map which generalized the work of...

Canonical functional extensions on von Neumann algebras

Carlo Cecchini (1999)

Studia Mathematica

The topology and the structure of the set of the canonical extensions of positive, weakly continuous functionals from a von Neumann subalgebra M 0 to a von Neumann algebra M are described.

Caractérisation Des Espaces 1-Matriciellement Normés

Le Merdy, Christian, Mezrag, Lahcéne (2002)

Serdica Mathematical Journal

Let X be a closed subspace of B(H) for some Hilbert space H. In [9], Pisier introduced Sp [X] (1 ≤ p ≤ +∞) by setting Sp [X] = (S∞ [X] , S1 [X])θ , (where θ =1/p , S∞ [X] = S∞ ⊗min X and S1 [X] = S1 ⊗∧ X) and showed that there are p−matricially normed spaces. In this paper we prove that conversely, if X is a p−matricially normed space with p = 1, then there is an operator structure on X, such that M1,n (X) = S1 [X] where Sn,1 [X] is the finite dimentional version of S1 [X]. For p...

Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann

Alain Connes (1974)

Annales de l'institut Fourier

Nous démontrons que la catégorie de von Neumann est équivalente à la catégorie des cônes autopolaires, facialement homogènes, complexes. Un cône dans un espace hilbertien réel est dit : 1) facialement homogène quand pour toute face F de l’opérateur δ = (Projection sur F - F ) - (Projection sur F - F ) est une dérivation de (i.e. e t δ = t R ) ; 2) complexe quand on s’est donné une structure d’algèbre de Lie complexe sur l’algèbre de Lie réelle des dérivations de , modulo son centre. Nous caractérisons les espaces...

Central limit theorems for the brownian motion on large unitary groups

Florent Benaych-Georges (2011)

Bulletin de la Société Mathématique de France

In this paper, we are concerned with the large n limit of the distributions of linear combinations of the entries of a Brownian motion on the group of n × n unitary matrices. We prove that the process of such a linear combination converges to a Gaussian one. Various scales of time and various initial distributions are considered, giving rise to various limit processes, related to the geometric construction of the unitary Brownian motion. As an application, we propose a very short proof of the asymptotic...

Central sequences in the factor associated with Thompson’s group F

Paul Jolissaint (1998)

Annales de l'institut Fourier

We prove that the type II 1 factor L ( F ) generated by the regular representation of F is isomorphic to its tensor product with the hyperfinite type II 1 factor. This implies that the unitary group of L ( F ) is contractible with respect to the topology defined by the natural Hilbertian norm.

Currently displaying 221 – 240 of 1491