The topological snake lemma and corona algebras.
The paper is devoted to some problems concerning a convergence of pointwise type in the -space over a von Neumann algebra M with a faithful normal state Φ [3]. Here is the completion of M under the norm .
Mimicking the von Neumann version of Kustermans and Vaes’ locally compact quantum groups, Franck Lesieur had introduced a notion of measured quantum groupoid, in the setting of von Neumann algebras. In a former article, the author had introduced the notions of actions, crossed-product, dual actions of a measured quantum groupoid; a biduality theorem for actions has been proved. This article continues that program: we prove the existence of a standard implementation for an action, and a biduality...
We study deformations of the classical convolution. For every invertible transformation T:μ ↦ Tμ, we are able to define a new associative convolution of measures by . We deal with the -deformation of the classical convolution. We prove the analogue of the classical Lévy-Khintchine formula. We also show the central limit measure, which turns out to be the standard Gaussian measure. Moreover, we calculate the Poisson measure in the -deformed classical convolution and give the orthogonal polynomials...
The aim of this work is to develop the variational approach to the Dirichlet problem for generators of sub-Markovian semigroups on C*-algebras. KMS symmetry and the KMS condition allow the introduction of the notion of weak solution of the Dirichlet problem. We will then show that a unique weak solution always exists and that a generalized maximum principle holds true.
We study the -deformation of gaussian von Neumann algebras. They appear as example in the theories of Interacting Fock spaces and conditionally free products. When the number of generators is fixed, it is proved that if is sufficiently close to , then these algebras do not depend on . In the same way, the notion of conditionally free von Neumann algebras often coincides with freeness.
Let X be a Banach space. If the natural projection p:X*** → X* is sequentially weak*-weak continuous then the space X is said to have the weak Phillips property. We present several characterizations of the spaces having this property and study its relationships to other Banach space properties, especially the Grothendieck property.