s-Numbers of operators in Banach spaces
Let X be a separable Banach space and denote by 𝓛(X) (resp. 𝒦(ℂ)) the set of all bounded linear operators on X (resp. the set of all compact subsets of ℂ). We show that the maps from 𝓛(X) into 𝒦(ℂ) which assign to each element of 𝓛(X) its spectrum, approximate point spectrum, essential spectrum, Weyl essential spectrum, Browder essential spectrum, respectively, are Borel maps, where 𝓛(X) (resp. 𝒦(ℂ)) is endowed with the strong operator topology (resp. Hausdorff topology). This enables us...
Let Ω= [a, b] × [c, d] and T 1, T 2 be partial integral operators in (Ω): (T 1 f)(x, y) = k 1(x, s, y)f(s, y)ds, (T 2 f)(x, y) = k 2(x, ts, y)f(t, y)dt where k 1 and k 2 are continuous functions on [a, b] × Ω and Ω × [c, d], respectively. In this paper, concepts of determinants and minors of operators E−τT 1, τ ∈ ℂ and E−τT 2, τ ∈ ℂ are introduced as continuous functions on [a, b] and [c, d], respectively. Here E is the identical operator in C(Ω). In addition, Theorems on the spectra of bounded...
We give a simple proof of the relation between the spectra of the difference and product of any two idempotents in a Banach algebra. We also give the relation between the spectra of their sum and product.
Burgos, Kaidi, Mbekhta and Oudghiri [J. Operator Theory 56 (2006)] provided an affirmative answer to a question of Kaashoek and Lay and proved that an operator F is of power finite rank if and only if for every operator T commuting with F. Later, several authors extended this result to the essential descent spectrum, left Drazin spectrum and left essential Drazin spectrum. In this paper, using the theory of operators with eventual topological uniform descent and the technique used by Burgos et...
We describe the spectra of Jacobi operators J with some irregular entries. We divide ℝ into three “spectral regions” for J and using the subordinacy method and asymptotic methods based on some particular discrete versions of Levinson’s theorem we prove the absolute continuity in the first region and the pure pointness in the second. In the third region no information is given by the above methods, and we call it the “uncertainty region”. As an illustration, we introduce and analyse the OP family...
We study general Hilbert modules over the disc algebra and exhibit necessary spectral conditions for the vanishing of certain associated extension groups. In particular, this sheds some light on the problem of identifying the projective Hilbert modules. Part of our work also addresses the classical derivation problem.