Displaying 441 – 460 of 700

Showing per page

Some facts from descriptive set theory concerning essential spectra and applications

Khalid Latrach, J. Martin Paoli, Pierre Simonnet (2005)

Studia Mathematica

Let X be a separable Banach space and denote by 𝓛(X) (resp. 𝒦(ℂ)) the set of all bounded linear operators on X (resp. the set of all compact subsets of ℂ). We show that the maps from 𝓛(X) into 𝒦(ℂ) which assign to each element of 𝓛(X) its spectrum, approximate point spectrum, essential spectrum, Weyl essential spectrum, Browder essential spectrum, respectively, are Borel maps, where 𝓛(X) (resp. 𝒦(ℂ)) is endowed with the strong operator topology (resp. Hausdorff topology). This enables us...

Spectra of partial integral operators with a kernel of three variables

Yusup Eshkabilov (2008)

Open Mathematics

Let Ω= [a, b] × [c, d] and T 1, T 2 be partial integral operators in C (Ω): (T 1 f)(x, y) = a b k 1(x, s, y)f(s, y)ds, (T 2 f)(x, y) = c d k 2(x, ts, y)f(t, y)dt where k 1 and k 2 are continuous functions on [a, b] × Ω and Ω × [c, d], respectively. In this paper, concepts of determinants and minors of operators E−τT 1, τ ∈ ℂ and E−τT 2, τ ∈ ℂ are introduced as continuous functions on [a, b] and [c, d], respectively. Here E is the identical operator in C(Ω). In addition, Theorems on the spectra of bounded...

Spectra of the difference, sum and product of idempotents

Mohamed Barraa, Mohamed Boumazgour (2001)

Studia Mathematica

We give a simple proof of the relation between the spectra of the difference and product of any two idempotents in a Banach algebra. We also give the relation between the spectra of their sum and product.

Spectra originating from semi-B-Fredholm theory and commuting perturbations

Qingping Zeng, Qiaofen Jiang, Huaijie Zhong (2013)

Studia Mathematica

Burgos, Kaidi, Mbekhta and Oudghiri [J. Operator Theory 56 (2006)] provided an affirmative answer to a question of Kaashoek and Lay and proved that an operator F is of power finite rank if and only if σ d s c ( T + F ) = σ d s c ( T ) for every operator T commuting with F. Later, several authors extended this result to the essential descent spectrum, left Drazin spectrum and left essential Drazin spectrum. In this paper, using the theory of operators with eventual topological uniform descent and the technique used by Burgos et...

Spectral analysis of unbounded Jacobi operators with oscillating entries

Jan Janas, Marcin Moszyński (2012)

Studia Mathematica

We describe the spectra of Jacobi operators J with some irregular entries. We divide ℝ into three “spectral regions” for J and using the subordinacy method and asymptotic methods based on some particular discrete versions of Levinson’s theorem we prove the absolute continuity in the first region and the pure pointness in the second. In the third region no information is given by the above methods, and we call it the “uncertainty region”. As an illustration, we introduce and analyse the OP family...

Spectral and homological properties of Hilbert modules over the disc algebra

Raphaël Clouâtre (2014)

Studia Mathematica

We study general Hilbert modules over the disc algebra and exhibit necessary spectral conditions for the vanishing of certain associated extension groups. In particular, this sheds some light on the problem of identifying the projective Hilbert modules. Part of our work also addresses the classical derivation problem.

Currently displaying 441 – 460 of 700