Clarkson--McCarthy interpolated inequalities in Finsler norms.
The Hilbert matrix acts on Hardy spaces by multiplication with Taylor coefficients. We find an upper bound for the norm of the induced operator.
On montre que si est une contraction à spectre dénombrable et telle que, pour tout
In this paper the notion of the derivative of the norm of a linear mapping in a normed vector space is introduced. The fundamental properties of the derivative of the norm are established. Using these properties, linear differential equations in a Banach space are studied and lower and upper estimates of the norms of their solutions are derived.
We discuss boundedness and compactness properties of the embedding , where is the closed linear span of the monomials in and is a finite positive Borel measure on the interval . In particular, we introduce a class of “sublinear” measures and provide a rather complete solution of the embedding problem for the class of quasilacunary sequences . Finally, we show how one can recapture some of Al Alam’s results on boundedness and the essential norm of weighted composition operators from ...
Let () be a compact set; assume that each ball centered on the boundary of meets in a set of positive Lebesgue measure. Let be the class of all continuously differentiable real-valued functions with compact support in and denote by the area of the unit sphere in . With each we associate the function of the variable (which is continuous in and harmonic in ). depends only on the restriction of to the boundary of . This gives rise to a linear operator acting from...
We characterize all the extreme points of the unit ball in the space of trilinear forms on the Hilbert space . This answers a question posed by R. Grząślewicz and K. John [7], who solved the corresponding problem for the real Hilbert space . As an application we determine the best constant in the inequality between the Hilbert-Schmidt norm and the norm of trilinear forms.
The formula is proved for precompact sets M of weakly compact operators on a Banach space. Here ϱ(M) is the joint spectral radius (the Rota-Strang radius), is the Hausdorff spectral radius (connected with the Hausdorff measure of noncompactness) and r(M) is the Berger-Wang radius.
Let X be a quasi-Banach rearrangement invariant space and let T be an (ε,δ)-atomic operator for which a restricted type estimate of the form for some positive function D and every measurable set E is known. We show that this estimate can be extended to the set of all positive functions f ∈ L¹ such that , in the sense that . This inequality allows us to obtain strong type estimates for T on several classes of spaces as soon as some information about the galb of the space X is known. In this paper...
Let A ∈ B(H) and B ∈ B(K). We say that A and B satisfy the Fuglede-Putnam theorem if AX = XB for some X ∈ B(K,H) implies A*X = XB*. Patel et al. (2006) showed that the Fuglede-Putnam theorem holds for class A(s,t) operators with s + t < 1 and they mentioned that the case s = t = 1 is still an open problem. In the present article we give a partial positive answer to this problem. We show that if A ∈ B(H) is a class A operator with reducing kernel and B* ∈ B(K) is a class 𝓨 operator, and AX =...
Let G be a group of automorphisms of a tree X (with set of vertices S) and H a kernel on S × S invariant under the action of G. We want to give an estimate of the -operator norm (1 ≤ r ≤ 2) of the operator associated to H in terms of a norm for H. This was obtained by U. Haagerup when G is the free group acting simply transitively on a homogeneous tree. Our result is valid when X is a locally finite tree and one of the orbits of G is the set of vertices at even distance from a given vertex; a technical...