Displaying 21 – 40 of 155

Showing per page

Characterizing Fréchet-Schwartz spaces via power bounded operators

Angela A. Albanese, José Bonet, Werner J. Ricker (2014)

Studia Mathematica

We characterize Köthe echelon spaces (and, more generally, those Fréchet spaces with an unconditional basis) which are Schwartz, in terms of the convergence of the Cesàro means of power bounded operators defined on them. This complements similar known characterizations of reflexive and of Fréchet-Montel spaces with a basis. Every strongly convergent sequence of continuous linear operators on a Fréchet-Schwartz space does so in a special way. We single out this type of "rapid convergence" for a sequence...

Charge transfer scatteringin a constant electric field

Lech Zieliński (1999)

Colloquium Mathematicae

We prove the asymptotic completeness of the quantum scattering for a Stark Hamiltonian with a time dependent interaction potential, created by N classical particles moving in a constant electric field.

Cheeger inequalities for unbounded graph Laplacians

Frank Bauer, Matthias Keller, Radosław K. Wojciechowski (2015)

Journal of the European Mathematical Society

We use the concept of intrinsic metrics to give a new definition for an isoperimetric constant of a graph. We use this novel isoperimetric constant to prove a Cheeger-type estimate for the bottom of the spectrum which is nontrivial even if the vertex degrees are unbounded.

Classes of operators satisfying a-Weyl's theorem

Pietro Aiena (2005)

Studia Mathematica

In this article Weyl’s theorem and a-Weyl’s theorem on Banach spaces are related to an important property which has a leading role in local spectral theory: the single-valued extension theory. We show that if T has SVEP then Weyl’s theorem and a-Weyl’s theorem for T* are equivalent, and analogously, if T* has SVEP then Weyl’s theorem and a-Weyl’s theorem for T are equivalent. From this result we deduce that a-Weyl’s theorem holds for classes of operators for which the quasi-nilpotent part H₀(λI...

Closed operators affiliated with a Banach algebra of operators

Bruce Barnes (1992)

Studia Mathematica

Let ℬ be a Banach algebra of bounded linear operators on a Banach space X. If S is a closed operator in X such that (λ - S)^{-1} ∈ ℬ for some number λ, then S is affiliated with ℬ. The object of this paper is to study the spectral theory and Fredholm theory relative to ℬ of an operator which is affiliated with ℬ. Also, applications are given to semigroups of operators which are contained in ℬ.

Closed range multipliers and generalized inverses

K. Laursen, M. Mbekhta (1993)

Studia Mathematica

Conditions involving closed range of multipliers on general Banach algebras are studied. Numerous conditions equivalent to a splitting A = TA ⊕ kerT are listed, for a multiplier T defined on the Banach algebra A. For instance, it is shown that TA ⊕ kerT = A if and only if there is a commuting operator S for which T = TST and S = STS, that this is the case if and only if such S may be taken to be a multiplier, and that these conditions are also equivalent to the existence of a factorization T = PB,...

Closed semistable operators and singular differential equations

Jaromír J. Koliha, Trung Dinh Tran (2003)

Czechoslovak Mathematical Journal

We study a class of closed linear operators on a Banach space whose nonzero spectrum lies in the open left half plane, and for which 0 is at most a simple pole of the operator resolvent. Our spectral theory based methods enable us to give a simple proof of the characterization of C 0 -semigroups of bounded linear operators with asynchronous exponential growth, and recover results of Thieme, Webb and van Neerven. The results are applied to the study of the asymptotic behavior of the solutions to a singularly...

Closed universal subspaces of spaces of infinitely differentiable functions

Stéphane Charpentier, Quentin Menet, Augustin Mouze (2014)

Annales de l’institut Fourier

We exhibit the first examples of Fréchet spaces which contain a closed infinite dimensional subspace of universal series, but no restricted universal series. We consider classical Fréchet spaces of infinitely differentiable functions which do not admit a continuous norm. Furthermore, this leads us to establish some more general results for sequences of operators acting on Fréchet spaces with or without a continuous norm. Additionally, we give a characterization of the existence of a closed subspace...

Co-analytic, right-invertible operators are supercyclic

Sameer Chavan (2010)

Colloquium Mathematicae

Let denote a complex, infinite-dimensional, separable Hilbert space, and for any such Hilbert space , let () denote the algebra of bounded linear operators on . We show that for any co-analytic, right-invertible T in (), αT is hypercyclic for every complex α with | α | > β - 1 , where β i n f | | x | | = 1 | | T * x | | > 0 . In particular, every co-analytic, right-invertible T in () is supercyclic.

Currently displaying 21 – 40 of 155