Coherent states and frames in the Bargman space of entire functions.
In this work, which can be seen as a continuation of a paper by Hadjiloucas and the author [Studia Math. 175 (2006)], we establish the existence of common Cesàro hypercyclic vectors for the following classes of operators: (i) multiples of the backward shift, (ii) translation operators and (iii) weighted differential operators. In order to do so, we first prove a version of Ansari's theorem for operators that are hypercyclic and Cesàro hypercyclic simultaneously; then our argument essentially relies...
The main meaning of the common extension for two linear operators is the following: given two vector subspaces G₁ and G₂ in a vector space (respectively an ordered vector space) E, a Dedekind complete ordered vector space F and two (positive) linear operators T₁: G₁ → F, T₂: G₂ → F, when does a (positive) linear common extension L of T₁, T₂ exist? First, L will be defined on span(G₁ ∪ G₂). In other results, formulated in the line of the Hahn-Banach extension theorem, the common...
In this paper we obtain some results concerning the set , where is the closure in the norm topology of the range of the inner derivation defined by Here stands for a Hilbert space and we prove that every compact operator in is quasinilpotent if is dominant, where is the closure of the range of in the weak topology.
MSC 2010: Primary: 447B37; Secondary: 47B38, 47A15
The relationship between the joint spectrum γ(A) of an n-tuple of selfadjoint operators and the support of the corresponding Weyl calculus T(A) : f ↦ f(A) is discussed. It is shown that one always has γ(A) ⊂ supp (T(A)). Moreover, when the operators are compact, equality occurs if and only if the operators mutually commute. In the non-commuting case the equality fails badly: While γ(A) is countable, supp(T(A)) has to be an uncountable set. An example is given showing that, for non-compact operators,...
It is proved that the set Q of quasinilpotent elements in a Banach algebra is an ideal, i.e. equal to the Jacobson radical, if (and only if) the condition [Q,Q] ⊆ Q (or a similar condition concerning anticommutators) holds. In fact, if the inner derivation defined by a quasinilpotent element p maps Q into itself then p ∈ Rad A. Higher commutator conditions of quasinilpotents are also studied. It is shown that if a Banach algebra satisfies such a condition, then every quasinilpotent element has some...
* Partially supported by Grant MM-428/94 of MESC.In this paper we present some generalizations of results of M. S. Livšic [4,6], concerning regular colligations (A1, A2, H, Φ, E, σ1, σ2, γ, ˜γ) (σ1 > 0) of a pair of commuting nonselfadjoint operators A1, A2 with finite dimensional imaginary parts, their complete characteristic functions and a class Ω(σ1, σ2) of operator-functions W(x1, x2, z): E → E in the case of an inner function W(1, 0, z) of the class Ω(σ1). ...
We show that a bounded linear operator S on the weighted Bergman space A¹(ψ) is compact and the predual space A₀(φ) of A¹(ψ) is invariant under S* if and only if as z → ∂D, where is the normalized reproducing kernel of A¹(ψ). As an application, we give conditions for an operator in the Toeplitz algebra to be compact.
We prove an abstract comparison principle which translates gaussian cotype into Rademacher cotype conditions and vice versa. More precisely, let 2 < q < ∞ and T: C(K) → F a continuous linear operator. (1) T is of gaussian cotype q if and only if , for all sequences with decreasing. (2) T is of Rademacher cotype q if and only if , for all sequences with decreasing. Our method allows a restriction to a fixed number of vectors and complements the corresponding results of Talagrand.