Extensions of cyclically monotone mappings
Here we present an approximation method for a rather broad class of first order variational problems in spaces of piece-wise constant functions over triangulations of the base domain. The convergence of the method is based on an inequality involving norms obtained by Nečas and on the general framework of Γ-convergence theory.
For a class of elastic-plastic constitutive laws with nonlinear kinematic and isotropic hardening, the problem of determining the response to a finite load step is formulated according to an implicit backward difference scheme (stepwise holonomic formulation), with reference to discrete structural models. This problem is shown to be amenable to a nonlinear mathematical programming problem and a criterion is derived which guarantees monotonie convergence of an iterative algorithm for the solution...